Mammalian skeletal muscles contain several types of muscle fibres, each characterised by its contraction speed and molecular properties. Individual motor axons innervate a few dozen muscle fibres, usually all of the same type. How this striking `motor unit homogeneity' is established is incompletely understood but, on p. 3489, Joshua Sanes and colleagues reveal that, in mice, signals from the muscle fibres influence the molecular properties of motoneurons that innervate them. The lack of markers for motoneuron types has impeded the study of motor unit homogeneity. Here, however, the researchers show that the motoneurons that innervate slow muscle fibres selectively express the synaptic vesicle protein SV2A and carry it to their nerve terminals. Notably, overexpression of the transcriptional co-regulator PGC1α in muscle fibres, which converts them to a slow phenotype, increases the number of SV2A-positive motoneurons. The researchers propose, therefore, that retrograde signals from muscles integrate with previously described anterograde influences of the nerve on the muscle fibre to match the properties of these synaptic partners to each other.
Muscling in on motoneuron specification
Muscling in on motoneuron specification. Development 15 October 2010; 137 (20): e2004. doi:
Download citation file:
Advertisement
Cited by
History of our journals

As our publisher, The Company of Biologists, turns 100 years old, read about Development’s journey and highlights from some its first issues, and explore the history of each of our sister journals: Journal of Cell Science, Journal of Experimental Biology, Disease Models & Mechanisms and Biology Open.
Call for papers – Lifelong Development: the Maintenance, Regeneration and Plasticity of Tissues

Development invites you to submit your latest research to our upcoming special issue – Lifelong Development: the Maintenance, Regeneration and Plasticity of Tissues. This issue will be coordinated by Guest Editors Meritxell Huch (Max Planck Institute of Molecular Cell Biology and Genetics, Germany) and Mansi Srivastava (Harvard University and Museum of Comparative Zoology, USA), working alongside our team of academic Editors. Submit your articles by 15 May 2025.
A case for broadening our view of mechanism in developmental biology

In this Perspective, B. Duygu Özpolat and colleagues survey researchers on their views on what it takes to infer mechanism in developmental biology. They examine what factors shape our idea of what we mean by ‘mechanism’ and suggest a path forward that embraces a broad outlook on the diversity of studies that advance knowledge in our field.
In preprints
Did you know that Development publishes perspectives on recent preprints? These articles help our readers navigate the ever-growing preprint literature. We welcome proposals for ‘In preprints’ articles, so please do get in touch if you’d like to contribute.