Traditionally, cellular differentiation is thought to be an irreversible commitment to a given cell identity. So, for example, differentiated neurons cannot generate new cells or adopt new identities. Now, however, Melissa Wright and colleagues provide evidence for the transdifferentiation of dorsal root ganglia (DRG) sensory neurons in zebrafish larvae (see p. 3047). Using time-lapse microscopy, the researchers track DRG neurons in wild-type zebrafish and in zebrafish mutant for the nav1.6 voltage-gated sodium channel. Some DRG neurons migrate ventrally from their normal position and then adopt a phenotype characteristic of sympathetic neurons in both types of larvae, they report, but more DRG neurons transdifferentiate in the mutant larvae. Furthermore, although the loss of sodium channel expression promotes the migration of DRG neurons, once in a new environment, these neurons transdifferentiate regardless of sodium channel expression. Thus, the researchers conclude, differentiated sensory neurons retain the plasticity needed to transdifferentiate when challenged by a new environment, a finding that suggests new strategies for the treatment of nervous system diseases.
Changing identities: neuronal transdifferentiation Free
Changing identities: neuronal transdifferentiation. Development 15 September 2010; 137 (18): e1804. doi:
Download citation file:
Advertisement
Cited by
Development presents…

Development is delighted to host a webinar series showcasing the latest developmental biology and stem cell research. The webinars are held each month with talks from postdocs applying for independent positions as part of our Pathway to Independence programme. Visit Development presents... on the Node to see which stimulating topics are coming up in the next few months.
Meet our 2025 Pathway to Independence (PI) fellows

We are delighted to announce our third cohort of PI fellows - researchers whom we will be supporting as they transition from postdoc to Principal Investigator. Read about the eight talented fellows chosen, whom we're excited to be working with as they navigate the job market.
A case for broadening our view of mechanism in developmental biology

In this Perspective, B. Duygu Özpolat and colleagues survey researchers on their views on what it takes to infer mechanism in developmental biology. They examine what factors shape our idea of what we mean by ‘mechanism’ and suggest a path forward that embraces a broad outlook on the diversity of studies that advance knowledge in our field.
Browse by subject
![Development logo - Browse by subject: Explore Development's content, now easily accessible by subject area. The ad has a black background with three vibrant scientific images: a developing embryo on the left, a green plant-like structure in the center, and a gastruloid (a circular cell with a bright pink center and blue outer ring) on the right. [Blue button: browse content].](https://cob.silverchair-cdn.com/ImageLibrary/Development/Snippets/2025_05_Dev_Browse-by-subject_600x230_Snippet.png?versionId=8993)
From cardiovascular development and regeneration to tissue engineering and organoids, Development’s browse by subject archive allows you to access the latest papers (from late 2024 onwards) on a particular field of interest. In addition to our curated subject collections, these subject pages allow readers to browse a broader range of papers organised by topic.