Cilia and flagella are important organelles involved in diverse functions such as fluid and cell movement, sensory perception and embryonic patterning. They are devoid of protein synthesis, thus their formation and maintenance requires the movement of protein complexes from the cytoplasm into the cilium and flagellum axoneme by intraflagellar transport (IFT), a conserved process common to all ciliated or flagellated eukaryotic cells. We report that mutations in the Caenorhabditis elegans gene Y41g9a.1 are responsible for the ciliary defects in osm-5 mutant worms. This was confirmed by transgenic rescue of osm-5(p813) mutants using the wild-type Y41g9a.1 gene. osm-5 encodes a tetratricopeptide repeat (TPR)-containing protein that is the homolog of murine polaris (Tg737), a protein associated with cystic kidney disease and left-right axis patterning defects in the mouse. osm-5 is expressed in ciliated sensory neurons in C. elegans and its expression is regulated by DAF-19, an RFX-type transcription factor that governs the expression of other genes involved in cilia formation in the worm. Similar to murine polaris, the OSM-5 protein was found to concentrate at the cilium base and within the cilium axoneme as shown by an OSM-5::GFP translational fusion and immunofluorescence. Furthermore, time-lapse imaging of OSM-5::GFP fusion protein shows fluorescent particle migration within the cilia. Overall, the data support a crucial role for osm-5 in a conserved ciliogenic pathway, most likely as a component of the IFT process. http://www.biologists.com/Development/movies/dev3342.html

Reference

Agard
D. A.
,
Hiraoka
Y.
,
Shaw
P.
,
Sedat
J. W.
(
1989
)
Fluorescence microscopy in three dimensions.
Methods Cell Biol
30
,
353
377
Apfeld
J.
,
Kenyon
C.
(
1999
)
Regulation of lifespan by sensory perception in Caenorhabditis elegans.
Nature
402
,
804
809
Bargmann
C. I.
,
Horvitz
H. R.
(
1991
)
Chemosensory neurons with overlapping functions direct chemotaxis to multiple chemicals in C. elegans.
Neuron
7
,
729
742
Barr
M. M.
,
Sternberg
P. W.
(
1999
)
A polycystic kidney-disease gene homologue required for male mating behaviour in C. elegans.
Nature
401
,
386
389
Blatch
G. L.
,
Lassle
M.
(
1999
)
The tetratricopeptide repeat: a structural motif mediating protein-protein interactions.
BioEssays
21
,
932
939
Brenner
S.
(
1974
)
The genetics of Caenorhabditis elegans.
Genetics
77
,
71
94
Sequencing Consortium
(
1998
)
Genome sequence of the nematode C. elegans: a platform for investigating biology.
Science
282
,
2012
2018
Coburn
C. M.
,
Bargmann
C. I.
(
1996
)
A putative cyclic nucleotide-gated channel is required for sensory development and function in C. elegans.
Neuron
17
,
695
706
Coburn
C. M.
,
Mori
I.
,
Ohshima
Y.
,
Bargmann
C. I.
(
1998
)
A cyclic nucleotide-gated channel inhibits sensory axon outgrowth in larval and adult Caenorhabditis elegans: a distinct pathway for maintenance of sensory axon structure.
Development
125
,
249
258
Cole
D. G.
,
Diener
D. R.
,
Himelblau
A. L.
,
Beech
P. L.
,
Fuster
J. C.
,
Rosenbaum
J. L.
(
1998
)
Chlamydomonas kinesin-II-dependent intraflagellar transport (IFT): IFT particles contain proteins required for ciliary assembly in Caenorhabditis elegans sensory neurons.
J. Cell Biol
141
,
993
1008
Collet
J.
,
Spike
C. A.
,
Lundquist
E. A.
,
Shaw
J. E.
,
Herman
R. K.
(
1998
)
Analysis of osm-6, a gene that affects sensory cilium structure and sensory neuron function in Caenorhabditis elegans.
Genetics
148
,
187
200
Culotti
J. G.
,
Russell
R. L.
(
1978
)
Osmotic avoidance defective mutants of the nematode Caenorhabditis elegans.
Genetics
90
,
243
256
Das
A. K.
,
Cohen
P. W.
,
Barford
D.
(
1998
)
The structure of the tetratricopeptide repeats of protein phosphatase 5: implications for TPR-mediated protein-protein interactions.
EMBO J
17
,
1192
1199
de Boer
M.
,
Hilarius-Stokman
P. M.
,
Hossle
J. P.
,
Verhoeven
A. J.
,
Graf
N.
,
Kenney
R. T.
,
Seger
R.
,
Roos
D.
(
1994
)
Autosomal recessive chronic granulomatous disease with absence of the 67-kD cytosolic NADPH oxidase component: identification of mutation and detection of carriers.
Blood
83
,
531
536
Dusenbery
D. B.
,
Sheridan
R. E.
,
Russell
R. L.
(
1975
)
Chemotaxis-defective mutants of the nematode Caenorhabditis elegans.
Genetics
80
,
297
309
Dutcher
S. K.
(
1995
)
Flagellar assembly in two hundred easy-to-follow steps.
Trends Genet
11
,
398
404
Dwyer
N. D.
,
Troemel
E. R.
,
Sengupta
P.
,
Bargmann
C. I.
(
1998
)
Odorant receptor localization to olfactory cilia is mediated by ODR-4, a novel membrane-associated protein.
Cell
93
,
455
466
Frangioni
J. V.
,
Neel
B. G.
(
1993
)
Solubilization and purification of enzymatically active glutathione S-transferase (pGEX) fusion proteins.
Anal. Biochem
210
,
179
87
Fujiwara
M.
,
Ishihara
T.
,
Katsura
I.
(
1999
)
A novel WD40 protein, CHE-2, acts cell-autonomously in the formation of C. elegans sensory cilia.
Development
126
,
4839
4848
Hall
D. H.
,
Russell
R. L.
(
1991
)
The posterior nervous system of the nematode Caenorhabditis elegans: serial reconstruction of identified neurons and complete pattern of synaptic interactions.
J. Neurosci
11
,
1
22
Hobert
O.
,
Mori
I.
,
Yamashita
Y.
,
Honda
H.
,
Ohshima
Y.
,
Liu
Y.
,
Ruvkun
G.
(
1997
)
Regulation of interneuron function in the C. elegans thermoregulatory pathway by the ttx-3 LIM homeobox gene.
Neuron
19
,
345
357
Krause
M.
,
Wild
M.
,
Rosenzweig
B.
,
Hirsh
D.
(
1989
)
Wild-type and mutant actin genes in Caenorhabditis elegans.
J. Mol. Biol
208
,
381
392
Marszalek
J. R.
,
Ruiz-Lozano
P.
,
Roberts
E.
,
Chien
K. R.
,
Goldstein
L. S.
(
1999
)
Situs inversus and embryonic ciliary morphogenesis defects inmouse mutants lacking the KIF3A subunit of kinesin-II.
Proc.Natl. Acad. Sci. USA
96
,
5043
5048
Mello
C. C.
,
Kramer
J. M.
,
Stinchcomb
D.
,
Ambros
V.
(
1991
).
Efficient gene transfer in C.elegans: extrachromosomal maintenance and integration of transforming sequences.
EMBO J
10
,
3959
3970
Mori
I.
,
Ohshima
Y.
(
1997
)
Molecular neurogenetics of chemotaxis and thermotaxis in the nematode Caenorhabditis elegans.
BioEssays
19
,
1055
1064
Moyer
J. H.
,
Lee-Tischler
M. J.
,
Kwon
H. Y.
,
Schrick
J. J.
,
Avner
E. D.
,
Sweeney
W. E.
,
Godfrey
V. L.
,
Cacheiro
N. L.
,
Wilkinson
J. E.
,
Woychik
R. P.
(
1994
)
Candidate gene associated with a mutation causing recessive polycystic kidney disease in mice.
Science
264
,
1329
1333
Murcia
N. S.
,
Richards
W. G.
,
Yoder
B. K.
,
Mucenski
M. L.
,
Dunlap
J. R.
,
Woychik
R. P.
(
2000
)
The Oak Ridge Polycystic Kidney (orpk) disease gene is required for left-right axis determination.
Development
127
,
2347
2355
Nonaka
S.
,
Tanaka
Y.
,
Okada
Y.
,
Takeda
S.
,
Harada
A.
,
Kanai
Y.
,
Kido
M.
,
Hirokawa
N.
(
1998
)
Randomization of left-right asymmetry due to loss of nodal cilia generating leftward flow of extraembryonic fluid in mice lacking KIF3B motor protein.
Cell
95
,
829
37
Okada
Y.
,
Nonaka
S.
,
Tanaka
Y.
,
Saijoh
Y.
,
Hamada
H.
,
Hirokawa
N.
(
1999
)
Abnormal nodal flow precedes situs inversus in iv and inv mice.
Mol. Cell
4
,
459
468
Orozco
J. T.
,
Wedaman
K. P.
,
Signor
D.
,
Brown
H.
,
Rose
L.
,
Scholey
J. M.
(
1999
)
Movement of motor and cargo along cilia.
Nature
398
,
674
–.
Pazour
G. J.
,
Dickert
B. L.
,
Vucica
Y.
,
Seeley
E. S.
,
Rosenbaum
J. L.
,
Witman
G. B.
,
Cole
D. G.
(
2000
)
Chlamydomonas IFT88 and its mouse homologue, polycystic kidney disease gene Tg737, are required for assembly of cilia and flagella.
J. Cell Biol
151
,
709
718
Peckol
E. L.
,
Zallen
J. A.
,
Yarrow
J. C.
,
Bargmann
C. I.
(
1999
)
Sensory activity affects sensory axon development in C. elegans.
Development
126
,
1891
1902
Perkins
L. A.
,
Hedgecock
E. M.
,
Thomson
J. N.
,
Culotti
J. G.
(
1986
)
Mutant sensory cilia in the nematode Caenorhabditis elegans.
Dev. Biol
117
,
456
487
Piperno
G.
,
Mead
K.
(
1997
)
Transplant of a novel complex in the cytoplasmic matrix of Chlamydomonas flagella.
Proc. Natl. Acad. Sci. USA
94
,
4457
4462
Rushforth
A. M.
,
Anderson
P.
(
1996
)
Splicing removes the Caenorhabditis elegans transposon Tc1 from most mutant pre-mRNAs.
Mol. Cell. Biol
16
,
422
429
Scalettar
B. A.
,
Swedlow
J. R.
,
Sedat
J. W.
,
Agard
D. A.
(
1996
)
Dispersion, aberration and deconvolution in multi-wavelength fluorescence images.
J. Microsc
182
,
50
60
Schrick
J. J.
,
Onuchic
L. F.
,
Reeders
S. T.
,
Korenberg
J.
,
Chen
X. N.
,
Moyer
J. H.
,
Wilkinson
J. E.
,
Woychik
R. P.
(
1995
)
Characterization of the human homologue of the mouse Tg737 candidate polycystic kidney disease gene.
Hum. Mol. Genet
4
,
559
567
Shakir
M. A.
,
Fukushige
T.
,
Yasuda
H.
,
Miwa
J.
,
Siddiqui
S. S.
(
1993
)
C. elegans osm-3 gene mediating osmotic avoidance behaviour encodes a kinesin-like protein.
NeuroReport
4
,
891
894
Signor
D.
,
Wedaman
K. P.
,
Orozco
J. T.
,
Dwyer
N. D.
,
Bargmann
C. I.
,
Rose
L. S.
,
Scholey
J. M.
(
1999
)
Role of a class DHC1b dynein in retrograde transport of IFT motors and IFT raft particles along cilia, but not dendrites, in chemosensory neurons of living Caenorhabditis elegans.
J. Cell Biol
147
,
519
530
Signor
D.
,
Wedaman
K. P.
,
Rose
L. S.
,
Scholey
J. M.
(
1999
)
Two heteromeric kinesin complexes in chemosensory neurons and sensory cilia of Caenorhabditis elegans.
Mol. Biol. Cell
10
,
345
360
Sikorski
R. S.
,
Michaud
W. A.
,
Hieter
P.
(
1993
)
p62cdc23 of Saccharomyces cerevisiae: a nuclear tetratricopeptide repeat protein with two mutable domains.
Mol. Cell. Biol
13
,
1212
21
Starich
T. A.
,
Herman
R. K.
,
Kari
C. K.
,
Yeh
W. H.
,
Schackwitz
W. S.
,
Schuyler
M. W.
,
Collet
J.
,
Thomas
J. H.
,
Riddle
D. L.
(
1995
)
Mutations affecting the chemosensory neurons of Caenorhabditis elegans.
Genetics
139
,
171
188
Swoboda
P.
,
Adler
H. T.
,
Thomas
J. H.
(
2000
)
The RFX-type transcription factor DAF-19 regulates sensory neuron cilium formation in C. elegans.
Mol. Cell
5
,
411
421
Vowels
J. J.
,
Thomas
J. H.
(
1992
)
Genetic analysis of chemosensory control of dauer formation in Caenorhabditis elegans.
Genetics
130
,
105
123
Ward
S.
,
Thomson
N.
,
White
J. G.
,
Brenner
S.
(
1975
)
Electron microscopical reconstruction of the anterior sensory anatomy of the nematode Caenorhabditis elegans.
J. Comp. Neurol
160
,
313
337
Ware
R. W.
,
Clark
D.
,
Crossland
K.
,
Russell
R. L.
(
1975
)
The nerve ring of the nematode Caenorhabditis elegans: sensory input and motor out.
J. Comp. Neurol
162
,
71
110
White
J. G.
,
Southgate
E.
,
Thomson
J. N.
,
Brenner
S.
(
1986
)
The structure of the nervous system of the nematode Caenorhabditis elegans.
Philos. Trans. R. Soc. London Ser. B Biol. Sci
314
,
1
340
Wicks
S.
,
de Vries
C.
,
van Luenen
H.
,
Plasterk
R.
(
2000
)
CHE-3, a cytosolic dynein heavy chain, is required for sensory cilia structure and function in caenorhabditis elegans.
Dev. Biol
221
,
295
307
Wittenburg
N.
,
Eimer
S.
,
Lakowski
B.
,
Rohrig
S.
,
Rudolph
C.
,
Baumeister
R.
(
2000
)
Presenilin is required for proper morphology and function of neurons in C. elegans.
Nature
406
,
306
309
Yoder
B. K.
,
Richards
W. G.
,
Sommardahl
C.
,
Sweeney
W. E.
,
Michaud
E. J.
,
Wilkinson
J. E.
,
Avner
E. D.
,
Woychik
R. P.
(
1997
)
Differential rescue of the renal and hepatic disease in an autosomal recessive polycystic kidney disease mouse mutant. A new model to study the liver lesion.
Am. J. Pathol
150
,
2231
2241
Yu
S.
,
Avery
L.
,
Baude
E.
,
Garbers
D. L.
(
1997
)
Guanylyl cyclase expression in specific sensory neurons: a new family of chemosensory receptors.
Proc. Natl. Acad. Sci. USA
94
,
3384
3387
This content is only available via PDF.