Rhombomeres are segmental units of the developing vertebrate hindbrain that underlie the reiterated organisation of cranial neural crest migration and neuronal differentiation. valentino (val), a zebrafish homologue of the mouse bzip transcription factor-encoding gene, kreisler, is required for segment boundary formation caudal to rhombomere 4 (r4). val is normally expressed in r5/6 and is required for cells to contribute to this region. In val(−) mutants, rX, a region one rhombomere in length and of mixed identity, lies between r4 and r7. While a number of genes involved in establishing rhombomeric identity are known, it is still largely unclear how segmental integrity is established and boundaries are formed. Members of the Eph family of receptor tyrosine kinases and their ligands, the ephrins, are candidates for functioning in rhombomere boundary formation. Indeed, expression of the receptor ephB4a coincides with val in r5/6, whilst ephrin-B2a, which encodes a ligand for EphB4a, is expressed in r4 and r7, complementary to the domain of val expression. Here we show that in val(−) embryos, ephB4a expression is downregulated and ephrin-B2a expression is upregulated between r4 and r7, indicating that Val is normally required to establish the mutually exclusive expression domains of these two genes. We show that juxtaposition of ephB4a-expressing cells and ephrin-B2a-expressing cells in the hindbrain leads to boundary formation. Loss of the normal spatial regulation of eph/ephrin expression in val mutants correlates not only with absence of boundaries but also with the inability of mutant cells to contribute to wild-type r5/6. Using a genetic mosaic approach, we show that spatially inappropriate Eph signalling underlies the repulsion of val(−) cells from r5/6. We propose that Val controls eph expression and that interactions between EphB4a and Ephrin-B2a mediate cell sorting and boundary formation in the segmenting caudal hindbrain.

Amores
A.
,
Force
A.
,
Yan
Y. L.
,
Joly
L.
,
Amemiya
C.
,
Fritz
A.
,
Ho
R. K.
,
Langeland
J.
,
Prince
V.
,
Wang
Y. L.
, et al. 
(
1998
)
Zebrafish hox clusters and vertebrate genome evolution.
Science
282
,
1711
1714
Bell
E.
,
Wingate
R. J.
,
Lumsden
A.
(
1999
)
Homeotic transformation of rhombomere identity after localised Hoxb1 misexpression.
Science
284
,
2168
2171
Bergemann
A.
,
Hwai-Jong
C.
,
Brambilla
R.
,
Klein
R.
,
Flanagan
J.
(
1995
)
Elf-2, a new member of the Eph ligand family, is segmentally expressed in mouse embryos in the region of the hindbrain and newly forming somites.
Mol. Cell. Biol
15
,
4921
4929
Bohme
B.
,
VandenBos
T.
,
Cerretti
D.P.
,
Park
L.S.
,
Holtrich
U.
,
Rubsamen-Waigmann
H.
,
Strebhardt
K.
(
1996
)
Cell-cell adhesion mediated by binding of membrane-anchored ligand LERK-2 to the EPH-related receptor human embryonal kinase 2 promotes tyrosine kinase activity.
J. Biol. Chem
271
,
24747
24752
rennan
C.
,
Monschau
B.
,
Lindberg
R.
,
Guthrie
B.
,
Drescher
U.
,
Bonhoeffer
F.
,
Holder
N.
(
1997
)
Two Eph receptor tyrosine kinase ligands control axon growth and may be involved in the creation of the retinotectal map in zebrafish.
Development
124
,
655
664
Bruckner
K.
,
Klein
R.
(
1998
)
Signaling by Eph receptors and their ephrin ligands.
Curr. Opin. Neurobiol
8
,
375
382
Bruckner
K.
,
Pasquale
E.
,
Klein
R.
(
1997
)
Tyrosine phosphorylation of transmembrane ligands for Eph receptors.
Science
275
,
1640
1643
Cheng
H.-J.
,
Flanagan
J.
(
1994
)
Identification and cloning of ELF-1, a developmentally expressed ligand for the Mek4 and Sek1 receptor tyrosine kinases.
Cell
79
,
157
168
Davis
S.
,
Gale
N.
,
Aldrich
T.
,
Maisonpierre
P.
,
Lhotak
V.
,
Pawson
T.
,
Goldfarb
M.
,
Yancopoulos
G.
(
1994
)
Ligands for EPH-related receptor tyrosine kinases that require membrane attachment or clustering for activity.
Science
266
,
816
819
Eph Nomenclature Committee
(
1997
)
Unified nomenclature for Eph family receptors and their ligands.
Cell
90
,
403
–.
Flanagan
J. G.
,
Vanderhaeghen
P.
(
1998
)
The ephrins and Eph receptors in neural development.
Annu. Rev. Neurosci
21
,
309
345
Gale
N.
,
Holland
S.
,
Valenzuela
D.
,
Flenniken
A.
,
Pan
L.
,
Ryan
T.
,
Henkemeyer
M.
,
Strebhardt
K.
,
Hirai
H.
,
Wilkinson
D.
, et al. 
(
1996
)
Eph receptors and ligands comprise two major specificity subclasses and are reciprocally compartmentalized during embryogenesis.
Neuron
17
,
9
19
Gilardi-Hebenstreit
P.
,
Nieto
M. A.
,
Frain
M.
,
Mattei
M. G.
,
Chestier
A.
,
Wilkinson
D. G.
,
Charnay
P.
(
1992
)
An Eph-related receptor protein tyrosine kinase gene segmentally expressed in the developing mouse hindbrain.
Oncogene
7
,
2499
2506
Guthrie
S.
,
Lumsden
A.
(
1991
)
Formation and regeneration of rhombomere boundaries in the developing chick hindbrain.
Development
112
,
221
229
Guthrie
S.
,
Prince
V.
,
Lumsden
A.
(
1993
)
Selective dispersal of avian rhombomere cells in orthotopic and heterotopic grafts.
Development
118
,
527
538
Hauptmann
G.
,
Gerster
T.
(
1994
)
Two-colour whole-mount in situ hybridisation to vertebrate and Drosophila embryos.
Trends Genet
10
,
266
–.
Heyman
I.
,
Faissner
A.
,
Lumsden
A.
(
1995
)
Cell and matrix specialisations of rhombomere boundaries.
Dev. Dyn
204
,
301
315
Hirano
S.
,
Tanaka
H.
,
Ohta
K.
,
Norita
M.
,
Hoshino
K.
,
Meguro
R.
,
Kase
M.
(
1998
)
Normal ontogenic observations on the expression of Eph receptor tyrosine kinase, Cek8, in chick embryos.
Anat. Embryol
197
,
187
197
Holder
N.
,
Klein
R.
(
1999
)
Eph receptors and ephrins: effectors of morphogenesis.
Development
126
,
2033
2044
Holland
S.
,
Gale
N.
,
Mbamalu
G.
,
Yancopoulos
G.
,
Henkemeyer
M.
,
Pawson
T.
(
1996
)
Bidirectional signalling through the Eph-family receptor Nuk and its transmembrane ligands.
Nature
383
,
722
725
Horton
R.M.
,
Cai
Z.L.
,
Ho
S.N.
,
Pease
L.R.
(
1990
)
Gene splicing by overlap extension: tailor-made genes using the polymerase chain reaction.
Biotechniques
8
,
528
535
Kimmel
C. B.
,
Metcalfe
W. K.
,
Schabtach
E.
(
1985
)
T-reticular interneurons: A class of serially repeating cells in the zebrafish hindbrain.
J. Comp. Neurol
233
,
365
376
Kimmel
C. B.
,
Ballard
W. W.
,
Kimmel
S. R.
,
Ullmann
B.
,
Schilling
T. F.
(
1995
)
Stages of embryonic development of the zebrafish.
Dev. Dyn
203
,
253
310
Krull
C.E.
,
Lansford
R.
,
Gale
N.W.
,
Collazo
A.
,
Marcells
C.
,
Yancopoulos
G.D.
,
Fraser
S.E.
,
Bronner-Fraser
M.
(
1997
)
Interactions of Eph-related receptors and ligands confer rostrocaudal pattern to trunk neural crest migration.
Curr. Biol
7
,
571
580
Lumsden
A.
,
Keynes
R.
(
1989
)
Segmental patterns of neuronal development in the chick hindbrain.
Nature
337
,
424
428
Lumsden
A.
,
Sprawson
N.
,
Graham
A.
(
1991
)
Segemental origin and migration of neural crest cells in the hindbrain region of the chick embryo.
Development
113
,
1281
1291
Manzanares
M.
,
Cordes
S.
,
Kwan
C.
,
Sham
M.
,
Barsh
G. S.
,
Krumlauf
R.
(
1997
)
Segmental regulation of Hoxb-3 by kreisler.
Nature
387
,
191
195
Mellitzer
G.
,
Xu
Q.
,
Wilkinson
D. G.
(
1999
)
Eph receptors and ephrins restrict cell intermingling and communication.
Nature
400
,
77
80
Metcalfe
W.
,
Mendelson
B.
,
Kimmel
C.
(
1986
)
Segmental homologies among reticulospinal neurons in the hindbrain of the zebrafish larva.
J. Comp. Neurol
251
,
147
159
Meyer
A.
,
Malaga-Trillo
E.
(
1999
)
Vertebrate genomics: More fishy tales about Hox genes.
Curr. Biol
9
,
210
213
Moens
C.
,
Cordes
S.
,
Giorgianni
M.
,
Barsh
G.
,
Kimmel
C.
(
1998
)
Equivalence in the genetic control of hindbrain segmentation in fish and mouse.
Development
125
,
381
391
Moens
C.
,
Yan
Y.-L.
,
Appel
B.
,
Force
A.
,
Kimmel
C.
(
1996
)
Valentino: a zebrafish gene required for normal hindbrain segmentation.
Development
122
,
3981
3990
Moens
C.
,
Fritz
A.
(
1999
)
Techniques in neural development.
Methods Cell Biol
59
,
253
272
Monschau
B.
,
Kremoser
C.
,
Ohta
K.
,
Tanaka
H.
,
Kaneko
T.
,
Yamada
T.
,
Handwerker
C.
,
Hornberger
M.
,
Loschinger
J.
,
Pasquale
E.
, et al. 
(
1997
)
Shared and distinct functions of RAGS and ELF-1 in guiding retinal axons.
EMBO J
16
,
1258
1267
Nieto
M. A.
,
Gilardi-Hebenstreit
P.
,
Charnay
P.
,
Wilkinson
D. G.
(
1992
)
A receptor tyrosine kinase implicated in the segmental patterning of the hindbrain and mesoderm.
Development
116
,
1137
1150
Oxtoby
E.
,
Jowett
T.
(
1993
)
Cloning of the zebrafish krox-20 gene (KRX-20) and its expression.
Nucleic Acids Res
21
,
1087
1095
Prince
V.
,
Moens
C.
,
Kimmel
C.
,
Ho
R.
(
1998
)
Zebrafish hox genes: expression in the hindbrain region of wild-type and mutants of the segmentation gene, valentino.
Development
125
,
393
406
Smith
A.
,
Robinson
V.
,
Patel
K.
,
Wilkinson
D.
(
1997
)
The EphA4 and EphB1 receptor tyrosine kinases and ephrin-B2 ligand regulate targeted migration of branchial neural crest cells.
Curr. Biol
7
,
561
570
Theil
T.
,
Frain
M.
,
Gilardi-Hebenstreit
P.
,
Flenniken
A.
,
Charnay
P.
,
Wilkinson
D. G.
(
1998
)
Segmental expression of the EphA4 (Sek1) receptor tyrosine kinase in the hindbrain is under the direct transcriptional control of Krox-20.
Development
125
,
443
452
Vaage
S.
(
1969
)
The segmentation of the primitive neural tube in chick embryos (Gallus domesticus).
Adv. Anat. Embryol. Cell Biol
41
,
1
88
Wang
H.
,
Anderson
D.
(
1997
)
Eph family transmembrane ligands can mediate repulsive guidance of trunk neural crest migration and motor axon outgrowth.
Neuron
18
,
383
396
Winning
R. S.
,
Sargent
T. D.
(
1994
)
Pagliaccio, a member of the Eph family of receptor tyrosine kinase genes, has localised expression in a subset of neural crest and neural tissues in Xenopus laevis embryos.
Mech. Dev
46
,
219
229
Xu
Q.
,
Holder
N.
,
Patient
R.
,
Wilson
S. W.
(
1994
)
Spatially regulated expression of three receptor tyrosine kinase genes during gastrulation in the zebrafish.
Development
120
,
287
289
Xu
Q.
,
Alldus
G.
,
Holder
N.
,
Wilkinson
D. G.
(
1995
)
Expression of truncated Sek-1 receptor tyrosine kinase disrupts the segmental restriction of gene expression in the Xenopus and zebrafish hindbrain.
Development
121
,
4005
4016
Xu
Q.
,
Mellitzer
G.
,
Robinson
V.
,
Wilkinson
D. G.
(
1999
)
In vivo cell sorting in complementary segmental domains mediated by Eph receptors and ephrins.
Nature
399
,
267
271
This content is only available via PDF.