Segmentation of a vertebrate embryo begins with the subdivision of the paraxial mesoderm into somites through a not-well-understood process. Recent studies provided evidence that the Notch-Delta and the FGFR (fibroblast growth factor receptor) signalling pathways are required for segmentation. In addition, the Mesp family of bHLH transcription factors have been implicated in establishing a segmental prepattern in the presomitic mesoderm. In this study, we have characterized zebrafish mesp-a and mesp-b genes that are closely related to Mesp family genes in other vertebrates. During gastrulation, only mesp-a is expressed in the paraxial mesoderm at the blastoderm margin. During the segmentation period, both genes are segmentally expressed in one to three stripes in the anterior parts of somite primordia. In fused somites (fss) embryos, in which all early somite boundary formation is blocked, initial mesp-a expression at the gastrula stage remains intact, but the expression of mesp-a and mesp-b is not detected during the segmentation period. This suggests that these genes are downstream targets of fss at the segmentation stage. Comparison with her1 expression (Muller, M., von Weizsacker, E. and Campos-Ortega, J. A. (1996) Development 122, 2071–2078) suggests that, like her1, mesp genes are not expressed in primordia of the first several somites. Furthermore, we found that zebrafish her1 expression oscillates in the presomitic mesoderm. The her1 stripe, which first appears in the tailbud region, moves in a caudal to rostral direction, and it finally overlaps the most rostral mesp stripe. Thus, in the trunk region, both her1 and mesp transcripts are detected in every somite primordium posterior to the forming somites. Ectopic expression of Mesp-b in embryos causes a loss of the posterior identity within the somite primordium, leading to a segmentation defect. These embryos show a reduction in expression of the posterior genes, myoD and notch5, with uniform expression of the anterior genes, FGFR1, papc and notch6. These observations suggest that zebrafish mesp genes are involved in anteroposterior specification within the presumptive somites, by regulating the essential signalling pathways mediated by Notch-Delta and FGFR.
Zebrafish Mesp family genes, mesp-a and mesp-b are segmentally expressed in the presomitic mesoderm, and Mesp-b confers the anterior identity to the developing somites
A. Sawada, A. Fritz, Y. Jiang, A. Yamamoto, K. Yamasu, A. Kuroiwa, Y. Saga, H. Takeda; Zebrafish Mesp family genes, mesp-a and mesp-b are segmentally expressed in the presomitic mesoderm, and Mesp-b confers the anterior identity to the developing somites. Development 15 April 2000; 127 (8): 1691–1702. doi: https://doi.org/10.1242/dev.127.8.1691
Download citation file:
Advertisement
Cited by
Development presents...
Our successful webinar series continues in 2021, with early-career researchers presenting their papers and a chance to virtually network with the developmental biology community afterwards. Here, Krisztina Ötvös tells us about the role link between nitrogen, auxin and root cell divisions.
Save your spot at our next session:
14 April
Time: 17:00 BST
Chaired by: François Guillemot
Join our mailing list to receive news and updates on the series.
The people behind the papers - Vincent Mouilleau, Célia Vaslin and Stéphane Nedelec
First authors, Vincent Mouilleau and Célia Vaslin, and their supervisor Stéphane Nedelec, talk about their latest work on HOX regulation, its potential clinical impact and where the story will take the Nedelec lab.
Special issue: call for papers
The Immune System in Development and Regeneration
Guest editors: Florent Ginhoux and Paul Martin
Submission deadline: 1 September 2021
Publication: Spring 2022
Upcoming grant deadlines
Grants awarded by The Company of Biologists help scientists travel, attend events and host sustainable activities. Make a note of the upcoming application deadlines and find out more about the grants on offer:
Sustainable Conferencing Grants
17 May 2021
Travelling Fellowships
31 May 2021
Scientific Meeting Grants
4 June 2021