Optic nerve formation requires precise retinal ganglion cell (RGC) axon pathfinding within the retina to the optic disc, the molecular basis of which is not well understood. At CNS targets, interactions between Eph receptor tyrosine kinases on RGC axons and ephrin ligands on target cells have been implicated in formation of topographic maps. However, studies in chick and mouse have shown that both Eph receptors and ephrins are also expressed within the retina itself, raising the possibility that this receptor-ligand family mediates aspects of retinal development. Here, we more fully document the presence of specific EphB receptors and B-ephrins in embryonic mouse retina and provide evidence that EphB receptors are involved in RGC axon pathfinding to the optic disc. We find that as RGC axons begin this pathfinding process, EphB receptors are uniformly expressed along the dorsal-ventral retinal axis. This is in contrast to the previously reported high ventral-low dorsal gradient of EphB receptors later in development when RGC axons map to CNS targets. We show that mice lacking both EphB2 and EphB3 receptor tyrosine kinases, but not each alone, exhibit increased frequency of RGC axon guidance errors to the optic disc. In these animals, major aspects of retinal development and cellular organization appear normal, as do the expression of other RGC guidance cues netrin, DCC, and L1. Unexpectedly, errors occur in dorsal but not ventral retina despite early uniform or later high ventral expression of EphB2 and EphB3. Furthermore, embryos lacking EphB3 and the kinase domain of EphB2 do not show increased errors, consistent with a guidance role for the EphB2 extracellular domain. Thus, while Eph kinase function is involved in RGC axon mapping in the brain, RGC axon pathfinding within the retina is partially mediated by EphB receptors acting in a kinase-independent manner.

REFERENCES

REFERENCES
Adams
R. H.
,
Wilkinson
G. A.
,
Weiss
C.
,
Diella
F.
,
Gale
N. W.
,
Deutsch
U.
,
Risau
W.
,
Klein
R.
(
1999
)
Roles of ephrinB ligands and EphB receptors in cardiovascular development: demarcation of arterial/venous domains, vascular morphogenesis, and sprouting angiogenesis.
Genes Dev
13
,
295
306
Bartsch
U.
,
Kirchhoff
F.
,
Schachner
M.
(
1989
)
Immunohistologicallocalization of the adhesion molecules L1, N-CAM, and MAG in the developing and adult optic nerve of mice.
J. Comp. Neurol
284
,
451
462
Bauch
H.
,
Stier
H.
,
Schlosshauer
B.
(
1998
)
Axonal versus dendritic outgrowth is differentially affected by radial glia in discrete layers of the retina.
J. Neurosci
18
,
1774
1785
Becker
N.
,
Seitanidou
T.
,
Murphy
P.
,
Mattei
M. G.
,
Topilko
P.
,
Nieto
M. A.
,
Wilkinson
D. G.
,
Charnay
P.
,
Gilardi-Hebenstreit
P.
(
1994
)
Several receptor tyrosine kinase genes of the Eph family are segmentally expressed in the developing hindbrain.
Mech. Dev
47
,
3
17
Braissant
O.
,
Foufelle
F.
,
Scotto
C.
,
Dauca
M.
,
Wahli
W.
(
1996
)
Differential expression of peroxisome proliferator-activated receptors (PPARs): tissue distribution of PPAR-alpha,-beta, and-gamma in the adult rat.
Endocrinology
137
,
354
366
Braisted
J. E.
,
McLaughlin
T.
,
Wang
H. U.
,
Friedman
G. C.
,
Anderson
D. J.
,
O'Leary
D. D. M.
(
1997
)
Graded and lamina-specific distributions of ligands of EphB receptor tyrosine kinases in the developing retinotectal system.
Dev. Biol
191
,
14
28
Brambilla
R.
,
Bruckner
K.
,
Orioli
D.
,
Bergemann
A. D.
,
Flanagan
J. G.
,
Klein
R.
(
1996
)
Similarities and differences in the way transmembrane-type ligands interact with the Elk subclass of Eph receptors.
Mol. Cell. Neurosci
8
,
199
209
Brittis
P. A.
,
Lemmon
V.
,
Rutishauser
U.
,
Silver
J.
(
1995
)
Unique changes of ganglion cell growth cone behavior following cell adhesion molecule perturbations: a time-lapse study of the living retina.
Mol. Cell. Neurosci
6
,
433
449
Bruckner
K.
,
Pasquale
E. B.
,
Klein
R.
(
1997
)
Tyrosine phosphorylation of transmembrane ligands for Eph receptors.
Science
275
,
1640
1643
Cheng
H. J.
,
Nakamoto
M.
,
Bergemann
A. D.
,
Flanagan
J. G.
(
1995
)
Complementary gradients in expression and binding of ELF-1 and Mek4 in development of the topographic retinotectal projection map.
Cell
82
,
371
381
Chung
W. W.
,
Lagenaur
C. F.
,
Yan
Y. M.
,
Lund
J. S.
(
1991
)
Developmental expression of neural cell adhesion molecules in the mouse neocortex and olfactory bulb.
J. Comp. Neurol
314
,
290
305
Connor
R. J.
,
Menzel
P.
,
Pasquale
E. B.
(
1998
)
Expression and tyrosine phosphorylation of Eph receptors suggest multiple mechanisms in patterning of the visual system.
Dev. Biol
193
,
21
35
Deiner
M. S.
,
Kennedy
T. E.
,
Fazeli
A.
,
Serafini
T.
,
Tessier-Lavigne
M.
,
Sretavan
D. W.
(
1997
)
Netrin-1 and DCC mediate axon guidance locally at the optic disc: loss of function leads to optic nerve hypoplasia.
Neuron
19
,
575
589
Dräger
U. C.
(
1985
)
Birth dates of retinal ganglion cells giving rise to the crossed and uncrossed optic projections in the mouse.
Proc. R. Soc. Lond. B Biol. Sci
224
,
57
77
Drescher
U.
,
Kremoser
C.
,
Handwerker
C.
,
Loschinger
J.
,
Noda
M.
,
Bonhoeffer
F.
(
1995
)
In vitro guidance of retinal ganglion cell axons by RAGS, a 25 kDa tectal protein related to ligands for Eph receptor tyrosine kinases.
Cell
82
,
359
370
Eph Nomenclature Committee
(
1997
)
Unified nomenclature for Eph family receptors and their ligands, the ephrins.
Cell
90
,
403
404
Flanagan
J. G.
,
Vanderhaeghen
P.
(
1998
)
The ephrins and Eph receptors in neural development.
Annu. Rev. Neurosci
21
,
309
345
Frisen
J.
,
Yates
P. A.
,
McLaughlin
T.
,
Friedman
G. C.
,
O'Leary
D. D. M.
,
Barbacid
M.
(
1998
)
Ephrin-A5 (AL-1/RAGS) is essential for proper retinal axon guidance and topographic mapping in the mammalian visual system.
Neuron
20
,
235
243
Gale
N. W.
,
Holland
S. J.
,
Valenzuela
D. M.
,
Flenniken
A.
,
Pan
L.
,
Ryan
T. E.
,
Henkemeyer
M.
,
Strebhardt
K.
,
Hirai
H.
,
Wilkinson
D. G.
(
1996
)
Eph receptors and ligands comprise two major specificity subclasses and are reciprocally compartmentalized during embryogenesis.
Neuron
17
,
9
19
Guillery
R. W.
,
Lysakowski
A.
,
Price
S.
(
1985
)
On the distribution and probable origin of axonal bundles in the pigment epithelium of the eyecup.
Brain Res
349
,
293
295
Halfter
W.
(
1988
)
Aberrant optic axons in the retinal pigment epithelium during chick and quail visual pathway development.
J. Comp. Neurol
268
,
161
170
Henkemeyer
M.
,
Orioli
D.
,
Henderson
J. T.
,
Saxton
T. M.
,
Roder
J.
,
Pawson
T.
,
Klein
R.
(
1996
)
Nuk controls pathfinding of commissural axons in the mammalian central nervous system.
Cell
86
,
35
46
Himanen
J. P.
,
Henkemeyer
M.
,
Nikolov
D. B.
(
1998
)
Crystal structure of the ligand-binding domain of the receptor tyrosine kinase EphB2.
Nature
396
,
486
491
Holash
J. A.
,
Pasquale
E. B.
(
1995
)
Polarized expression of the receptor protein tyrosine kinase Cek5 in the developing avian visual system.
Dev. Biol
172
,
683
693
Holash
J. A.
,
Soans
C.
,
Chong
L. D.
,
Shao
H.
,
Dixit
V. M.
,
Pasquale
E. B.
(
1997
)
Reciprocal expression of the Eph receptor Cek5 and its ligand(s) in the early retina.
Dev. Biol
182
,
256
269
Holland
S. J.
,
Gale
N. W.
,
Mbamalu
G.
,
Yancopoulos
G. D.
,
Henkemeyer
M.
,
Pawson
T.
(
1996
)
Bidirectional signalling through the EPH-family receptor Nuk and its transmembrane ligands.
Nature
383
,
722
725
Hornberger
M. R.
,
Dutting
D.
,
Ciossek
T.
,
Yamada
T.
,
Handwerker
C.
,
Lang
S.
,
Weth
F.
,
Huf
J.
,
Wessel
R.
,
Logan
C.
(
1999
)
Modulation of EphA receptor function by coexpressed ephrinA ligands on retinal ganglion cell axons.
Neuron
22
,
731
742
Kim
R. Y.
,
Hoyt
W. F.
,
Lessell
S.
,
Narahara
M. H.
(
1989
)
Superior segmental optic hypoplasia: a sign of maternal diabetes.
Arch. Ophthalmol
107
,
1312
1315
Krull
C. E.
,
Lansford
R.
,
Gale
N. W.
,
Collazo
A.
,
Marcelle
C.
,
Yancopoulos
G. D.
,
Fraser
S. E.
,
Bronner-Fraser
M.
(
1997
)
Interactions of Eph-related receptors and ligands confer rostrocaudal pattern to trunk neural crest migration.
Curr. Biol
7
,
571
580
LaVail
M. M.
,
Battelle
B. A.
(
1975
)
Influence of eye pigmentation and light deprivation on inherited retinal dystrophy in the rat.
Exp. Eye Res
21
,
167
192
Marcus
R. C.
,
Gale
N. W.
,
Morrison
M. E.
,
Mason
C. A.
,
Yancopoulos
G. D.
(
1996
)
Eph family receptors and their ligands distribute in opposing gradients in the developing mouse retina.
Dev. Biol
180
,
786
789
Mellitzer
G.
,
Xu
Q.
,
Wilkinson
D. G.
(
1999
)
Eph receptors and ephrins restrict cell intermingling and communication.
Nature
400
,
77
81
Nakamoto
M.
,
Cheng
H. J.
,
Friedman
G. C.
,
McLaughlin
T.
,
Hansen
M. J.
,
Yoon
C. H.
,
O'Leary
D. D.
,
Flanagan
J. G.
(
1996
)
Topographically specific effects of ELF-1 on retinal axon guidance in vitro and retinal axon mapping in vivo.
Cell
86
,
755
766
Orioli
D.
,
Henkemeyer
M.
,
Lemke
G.
,
Klein
R.
,
Pawson
T.
(
1996
)
Sek4 and Nuk receptors cooperate in guidance of commissural axons and in palate formation.
EMBO J
15
,
6035
6049
Ott
H.
,
Bastmeyer
M.
,
Stuermer
C. A.
(
1998
)
Neurolin, the goldfish homolog of DM-GRASP, is involved in retinal axon pathfinding to the optic disk.
J. Neurosci
18
,
3363
3372
Paschke
K. A.
,
Lottspeich
F.
,
Stuermer
C. A.
(
1992
)
Neurolin, a cell surface glycoprotein on growing retinal axons in the goldfish visual system, is reexpressed during retinal axonal regeneration.
J. Cell Biol
117
,
863
875
Silver
J.
,
Rutishauser
U.
(
1984
)
Guidance of optic axons in vivo by a preformed adhesive pathway on neuroepithelial endfeet.
Dev. Biol
106
,
485
499
Smith
A.
,
Robinson
V.
,
Patel
K.
,
Wilkinson
D. G.
(
1997
)
The EphA4 and EphB1 receptor tyrosine kinases and ephrin-B2 ligand regulate targeted migration of branchial neural crest cells.
Curr. Biol
7
,
561
570
Stier
H.
,
Schlosshauer
B.
(
1995
)
Axonal guidance in the chicken retina.
Development
121
,
1443
1454
Wang
H. U.
,
Anderson
D. J.
(
1997
)
Eph family transmembrane ligands can mediate repulsive guidance of trunk neural crest migration and motor axon outgrowth.
Neuron
18
,
383
396
Wang
H. U.
,
Chen
Z. F.
,
Anderson
D. J.
(
1998
)
Molecular distinction and angiogenic interaction between embryonic arteries and veins revealed by ephrin-B2 and its receptor Eph-B4.
Cell
93
,
741
753
Xu
Q.
,
Alldus
G.
,
Holder
N.
,
Wilkinson
D. G.
(
1995
)
Expression of truncated Sek-1 receptor tyrosine kinase disrupts the segmental restriction of gene expression in the Xenopus and zebrafish hindbrain.
Development
121
,
4005
4016
Xu
Q.
,
Alldus
G.
,
Macdonald
R.
,
Wilkinson
D. G.
,
Holder
N.
(
1996
)
Function of the Eph-related kinase rtk1 in patterning of the zebrafish forebrain.
Nature
381
,
319
322
Xu
Q.
,
Mellitzer
G.
,
Robinson
V.
,
Wilkinson
D. G.
(
1999
)
In vivo cell sorting in complementary segmental domains mediated by Eph receptors and ephrins.
Nature
399
,
267
271
This content is only available via PDF.