Spemann's organizer plays an essential role in patterning the vertebrate embryo. During gastrulation, organizer cells involute and form the prechordal plate anteriorly and the notochord more posteriorly. The fate mapping and gene expression analyses in zebrafish presented in this study reveal that this anteroposterior polarity is already initiated in the organizer before gastrulation. Prechordal plate progenitors reside close to the blastoderm margin and express the homeobox gene goosecoid, whereas notochord precursors are located further from the margin and express the homeobox gene floating head. The nodal-related genes cyclops and squint are expressed at the blastoderm margin and are required for prechordal plate and notochord formation. We show that differential activation of the Nodal signaling pathway is essential in establishing anteroposterior pattern in the organizer. First, overexpression of cyclops and squint at different doses leads to the induction of floating head at low doses and the induction of both goosecoid and floating head at higher doses. Second, decreasing Nodal signaling using different concentrations of the antagonist Antivin inhibits goosecoid expression at low doses and blocks expression of both goosecoid and floating head at higher doses. Third, attenuation of Nodal signaling in zygotic mutants for the EGF-CFC gene one-eyed pinhead, an essential cofactor for Nodal signaling, leads to the loss of goosecoid expression and expansion of floating head expression in the organizer. Concomitantly, cells normally fated to become prechordal plate are transformed into notochord progenitors. Finally, activation of Nodal signaling at different times suggests that prechordal plate specification requires sustained Nodal signaling, whereas transient signaling is sufficient for notochord development. Together, these results indicate that differential Nodal signaling patterns the organizer before gastrulation, with the highest level of activity required for anterior fates and lower activity essential for posterior fates.

REFERENCES

Adelman
H. B.
(
1932
)
The development of the prechordal plate and mesoderm of Amblystoma punctatum.
J. Morph
54
,
1
67
Alexander
J.
,
Stainier
D. Y. R.
(
1999
)
A molecular pathway leading to endoderm formation in zebrafish.
Current Biol
9
,
1147
1157
Bisgrove
B. W.
,
Essner
J. J.
,
Yost
H. J.
(
1999
)
Regulation of midline development by antagonism of lefty and nodal signaling.
Development
126
,
3253
3262
Cho
K. W.
,
Blumberg
B.
,
Steinbesser
H.
,
DeRobertis
E. M.
(
1991
)
Molecular nature of Spemann's organizer: the role of the Xenopus homeobox gene goosecoid.
Cell
67
,
1111
1120
Clements
D.
,
Friday
R. V.
,
Woodland
H. R.
(
1999
)
Mode of action of VegT in mesoderm and endoderm formation.
Development
126
,
4903
4911
Conlon
F. L.
,
Lyons
K. M.
,
Takaesu
N.
,
Barth
K. S.
,
Kispert
A.
,
Herrmann
B.
,
Robertson
E. J.
(
1994
)
A primary requirement for nodal in the formation and maintenance of the primitive streak in the mouse.
Development
120
,
1919
1928
Cooper
M. S.
,
D'Amico
L. A.
(
1996
)
A cluster of noninvoluting endocytic cells at the margin of the zebrafish blastoderm marks the site of embryonic shield formation.
Dev. Biol
180
,
184
198
Dyson
S.
,
Gurdon
J. B.
(
1998
)
The interpretation of position in a morphogen gradient as revealed by occupancy of Activin receptors.
Cell
93
,
557
568
Erter
C. E.
,
Solnica-Krezel
L.
,
Wright
C. V. E.
(
1998
)
Zebrafish nodal-related 2 encodes an early mesendodermal inducer signaling from the extraembryonic yolk syncytial layer.
Dev. Biol
204
,
361
372
Feldman
B.
,
Gates
M. A.
,
Egan
E. S.
,
Dougan
S. T.
,
Rennebeck
G.
,
Sirotkin
H. I.
,
Schier
A. F.
,
Talbot
W. S.
(
1998
)
Zebrafish organizer development and germ-layer formation require nodal-related signals.
Nature
395
,
181
185
Gont
L. K.
,
Fainsod
A.
,
Kim
S. H.
,
DeRobertis
E. M.
(
1996
)
Overexpression of the Homeobox Gene Xnot-2 Leads to Notochord Formation in Xenopus.
Dev. Biol
174
,
174
178
Green
J. B. A.
,
New
H. V.
,
Smith
J. C.
(
1992
)
Responses of embryonic Xenopus cells to activin and FGF are separated by multiple dose thresholds and correspond to distinct axes of the mesoderm.
Cell
71
,
731
739
Green
J. B. A.
,
Cook
T. L.
,
Smith
J. C.
,
Grainger
R. M.
(
1997
)
Anteroposterior neural tissue specification by activin-induced mesoderm.
Proc. Natl. Acad. Sci. USA
94
,
8596
8601
Gritsman
K.
,
Zhang
J.
,
Cheng
S.
,
Heckscher
E.
,
Talbot
W. S.
,
Schier
A. F.
(
1999
)
The EGF-CFC protein one-eyed pinhead is essential for nodal signaling.
Cell
97
,
121
132
Gu
Z.
,
Nomura
M.
,
Simpson
B. B.
,
Lei
H.
,
Feijen
A.
,
van den Eijnden-van Raaij
J.
,
Donahoe
P. K.
,
Li
E.
(
1998
)
The type I activin receptor ActRIB is required for egg cylinder organization and gastrulation in the mouse.
Genes Dev
12
,
844
57
Gurdon
J. B.
,
Harger
P.
,
Mitchell
A.
,
Lemaire
P.
(
1994
)
Activin signalling and response to a morphogen gradient.
Nature
371
,
487
492
Gurdon
J.B.
,
Mitchell
A.
,
Mahony
D.
(
1995
)
Direct and continuous assessment by cells of their position in a morphogen gradient.
Nature
376
,
520
521
Gurdon
J. B.
,
Mitchell
A.
,
Ryan
K.
(
1996
)
An experimental system for analyzing response to a morphogen gradient.
Proc. Natl. Acad. Sci. USA
93
,
9334
9338
Gurdon
J. B.
,
Dyson
S.
,
St. Johnston
D.
(
1998
)
Cells' perception of position in a concentration gradient.
Cell
95
,
159
162
Halpern
M. E.
,
Thisse
C.
,
Ho.
R. K.
,
Thisse
B.
,
Riggleman
B.
,
Trevarrow
B.
,
Weinberg
E. S.
,
Postlethwait
J. H.
,
Kimmel
C. B.
(
1995
)
Cell-autonomous shift from axial to paraxial mesodermal development in zebrafish floating head mutants.
Development
121
,
4257
4264
Harland
R.
,
Gerhart
J.
(
1997
)
Formation and function of Spemann's organizer.
Annu. Rev. Cell Dev. Biol
13
,
611
667
Jacob
M.
,
Jacob
H. J.
,
Wachtler
F.
,
Christ
B.
(
1984
)
Ontogeny of avian extrinsic ocular muscles. I. A light-and electron-microscopic study.
Cell Tissue Res
237
,
549
557
Jones
C. M.
,
Kuehn
M. R.
,
Hogan
B. L. M.
,
Smith
J. C.
,
Wright
C. V. E.
(
1995
)
Nodal-related signals induce axial mesoderm and dorsalize mesoderm during gastrulation.
Development
121
,
3651
3662
Jones
C. M.
,
Armes
N.
,
Smith
J. C.
(
1996
)
Signalling by TGF-family members: short-range effects of Xnr-2 and BMP-4 contrast with the long-range effects of activin.
Current Biol
6
,
1468
1475
Joseph
E. M.
,
Melton
D. A.
(
1997
)
Xnr4: a Xenopus nodal-related gene expressed in the Spemann organizer.
Dev. Biol
184
,
367
372
Jowett
T.
,
Yan
Y.-L.
(
1996
)
Double fluorescent in situ hybridization to zebrafish embryos.
Trends Gen
12
,
387
389
Keller
R. E.
(
1976
)
Vital dye mapping of the gastrula and neurula of Xenopus laevis. II. Prospective areas and morphogenetic movements of the deep layer.
Dev. Biol
51
,
118
137
Kimmel
C. B.
,
Warga
R. M.
,
Schilling
T.F.
(
1990
)
Origin and organization of the zebrafish fate map.
Development
108
,
581
594
Kimmel
C. B.
,
Ballard
W. W.
,
Kimmel
S. R.
,
Ullmann
B.
,
Schilling
T. F.
(
1995
)
Stages of embryonic development of the zebrafish.
Dev. Dynamics
203
,
253
310
Kozlowski
D. J.
,
Murakami
T.
,
Ho
R. K.
,
Weinberg
E. S.
(
1997
)
Regional cell movement and tissue patterning in the zebrafish embryo revealed by fate mapping with caged fluorescein.
Biochem. Cell Biol
75
,
551
562
Lustig
K. D.
,
Kroll
K.
,
Sun
E.
,
Ramos
R.
,
Elmendorf
H.
,
Kirschner
M. W.
(
1996
)
A Xenopus nodal-related gene that acts in synergy with noggin to induce complete secondary axis and notochord formation.
Development
122
,
3275
3282
Marshall
C. J.
(
1995
)
Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation.
Cell
80
,
179
185
Matzuk
M. M.
,
Kumar
T. R.
,
Vassalli
A.
,
Bickenback
J. R.
,
Roop
D. R.
,
Jaenisch
R.
,
Bradley
A.
(
1995
)
Functional analysis of activins during mammalian development.
Nature
374
,
354
356
McDowell
N.
,
Zorn
A. M.
,
Crease
D. J.
,
Gurdon
J. B.
(
1997
)
Activin has direct long-range signalling activity and can form a concentration gradient by diffusion.
Curr. Biol
7
,
671
681
Melby
A. E.
,
Warga
R. M.
,
Kimmel
C. B.
(
1996
)
Specification of cell fates at the dorsal margin of the zebrafish gastrula.
Development
122
,
2225
2237
Meno
C.
,
Gritsman
K.
,
Ohishi
S.
,
Ohfuji
Y.
,
Heckscher
E.
,
Mochida
K.
,
Shimono
A.
,
Kondoh
H.
,
Talbot
W. S.
,
Robertson
E. J.
,
Schier
A. F.
,
Hamada
H.
(
1999
)
Mouse Lefty2 and Zebrafish Antivin are feedback inhibitors of Nodal signaling during vertebrate gastrulation. Molec.
Cell
4
,
287
298
Niehrs
C.
,
Keller
R.
,
Cho
K. W.
,
DeRobertis
E. M.
(
1993
)
The homeobox gene goosecoid controls cell migration in Xenopus embryos.
Cell
72
,
491
503
Nomura
M.
,
Li
E.
(
1998
)
Smad2 role in mesoderm formation, left-right patterning and craniofacial development.
Nature
393
,
786
790
Oh
S. P.
,
Li
E.
(
1997
)
The signaling pathway mediated by the type IIB activin receptor controls axial patterning and lateral asymmetry in the mouse.
Genes Dev
11
,
1812
1826
Osada
S. I.
,
Wright
C.V.
(
1999
)
Xenopus nodal-related signaling is essential for mesendodermal patterning during early embryogenesis.
Development
126
,
3229
3240
Piccolo
S.
,
Agius
E.
,
Leyns
L.
,
Bhattacharyya
S.
,
Grunz
H.
,
Bouwmeester
T.
,
DeRobertis
E. M.
(
1999
)
The head inducer Cerberus is a multifunctional antagonist of Nodal, BMP and Wnt signals.
Nature
397
,
707
710
Rebagliati
M. R.
,
Toyama
R.
,
Fricke
C.
,
Haffter
P.
,
Dawid
I. B.
(
1998
)
Zebrafish nodal-related genes are implicated in axial patterning and establishing left-right asymmetry.
Dev. Biol
199
,
261
272
Rebagliati
M. R.
,
Toyama
R.
,
Haffter
P.
,
Dawid
I. B.
(
1998
)
cyclops encodes a nodal-related factor involved in midline signaling.
Proc. Natl. Acad. Sci. USA
95
,
9932
7
Rodaway
A.
,
Takeda
H.
,
Koshida
S.
,
Broadbent
J.
,
Price
B.
,
Smith
J. C.
,
Patient
R.
,
Holder
N.
(
1999
)
Induction of the mesendoderm in the zebrafish germ ring by yolk cell-derived TGF-family signals and discrimination of mesoderm and endoderm by FGF.
Development
126
,
3067
3078
Sampath
K.
,
Rubinstein
A. L.
,
Cheng
A. M.
,
Liang
J. O.
,
Fekany
K.
,
Solnica-Krezel
L.
,
Korzh
V.
,
Halpern
M. E.
,
Wright
C. V.
(
1998
)
Induction of the zebrafish ventral brain and floorplate requires cyclops/nodal signaling.
Nature
395
,
185
189
Schier
A. F.
,
Neuhauss
A. F. K.
,
Helde
A.
,
Talbot
W. S.
,
Driever
W.
(
1997
)
The one-eyed pinhead gene functions in mesoderm and endoderm formation in zebrafish and interacts with no tail.
Development
124
,
327
342
Schier
A. F.
,
Talbot
W. S.
(
1998
)
The zebrafish organizer.
Curr. Opin. Gen. Dev
8
,
464
471
Schulte-Merker
S.
,
Smith
J. C.
,
Dale
L.
(
1994
)
Effects of truncated activin and FGF receptors and of follistatin on the inducing activities of BVg1 and activin: does activin play a role in mesoderm induction?.
EMBO J
13
,
3533
3541
Serbedzija
G. N.
,
Chen
J. N.
,
Fishman
M. C.
(
1998
)
Regulation in the heart field of zebrafish.
Development
125
,
1095
1101
Shih
J.
,
Fraser
S. E.
(
1995
)
Distribution of tissue progenitors within the shield region of the zebrafish gastrula.
Development
121
,
2755
2765
Shih
J.
,
Fraser
S. E.
(
1996
)
Characterizing the zebrafish organizer: microsurgical analysis at the early-shield stage.
Development
122
,
1313
22
Stachel
S. E.
,
Grunwald
D. J.
,
Myers
P. Z.
(
1993
)
Lithium perturbation and goosecoid expression identify a dorsal specification pathway in the pregastrula zebrafish.
Development
117
,
1261
1274
Talbot
W. S.
,
Trevarrow
B.
,
Halpern
M. E.
,
Melby
A. E.
,
Farr
G.
,
Postlethwait
J. H.
,
Jowett
T.
,
Kimmel
C. B.
,
Kimelman
D.
(
1995
)
A homeobox gene essential for zebrafish notochord development.
Nature
378
,
150
157
Thisse
C.
,
Thisse
B.
,
Halpern
M. E.
,
Postlethwait
J. H.
(
1994
)
Goosecoid expression in neurectoderm and mesendoderm is disrupted in zebrafish cyclops gastrulas.
Dev. Biol
164
,
420
9
Thisse
C.
,
Thisse
B.
(
1999
)
Antivin, a novel and divergent member of the TGFbeta superfamily, negatively regulates mesoderm induction.
Development
126
,
229
240
Vincent
J. P.
,
O'Farrell
J. P.
(
1992
)
The state of engrailed expression is not clonally transmitted during early Drosophila development.
Cell
68
,
923
931
von Dassow
G.
,
Schmidt
J. E.
,
Kimelman
D.
(
1993
)
Induction of the Xenopus organizer: expression and regulation of Xnot, a novel FGF and activin-regulated homeobox gene.
Genes Dev
7
,
355
66
Wachtler
F.
,
Jacob
H. J.
,
Jacob
M.
,
Christ
B.
(
1984
)
The extrinsic ocular muscles in birds are derived from the prechordal plate.
Naturwissenschaften
71
,
379
80
Waldrip
W. R.
,
Bikoff
E. K.
,
Hoodless
P. A.
,
Wrana
J. L.
,
Robertson
E. J.
(
1998
)
Smad2 signaling in extraembryonic tissues determines anterior-posterior polarity of the early mouse embryo.
Cell
92
,
797
808
Warga
R. M.
,
Nusslein-Volhard
C.
(
1999
)
Origin and development of the zebrafish endoderm.
Development
126
,
827
838
Weinstein
M.
,
Yang
X.
,
Li
C.
,
Xu
X.
,
Gotay
J.
,
Deng
C. X.
(
1998
)
Failure of egg cylinder elongation and mesoderm induction in mouse embryos lacking the tumor suppressor smad2.
Proc. Natl. Acad. Sci. USA
95
,
9378
9383
Whitman
M.
(
1998
)
Smads and early developmental signaling by the TGFbeta superfamily.
Genes Dev
12
,
2445
2462
Xu
Q.
,
Holder
N.
,
Patient
R.
,
Wilson
S.W.
(
1994
)
Spatially regulated expression of three receptor tyrosine kinase genes during gastrulation in zebrafish.
Development
120
,
287
299
Yasuo
H.
,
Lemaire
P.
(
1999
)
A two-step model for the fate determination of presumptive endodermal blastomeres in Xenopus embryos.
Current Biol
9
,
869
879
Zhang
J.
,
Talbot
W. S.
,
Schier
A. F.
(
1998
)
Positional cloning identifies zebrafish one-eyed pinhead as a permissive EGF-related ligand required during gastrulation.
Cell
92
,
241
251
Zhou
X.
,
Sasaki
H.
,
Lowe
L.
,
Hogan
B. L.
,
Kuehn
M. R.
(
1993
)
Nodal is a novel TGF-beta-like gene expressed in the mouse node during gastrulation.
Nature
361
,
543
547
Zoltiewics
J. S.
,
Gerhart
J. C.
(
1997
)
The Spemann Organizer of Xenopus is patterned along its anteroposterior axis at the earliest gastrula stage.
Dev. Biol
192
,
482
491
Zorn
A. M.
,
Butler
K.
,
Gurdon
J. B.
(
1999
)
Anterior endomesoderm specification in Xenopus by Wnt/beta-catenin and TGF-beta signalling pathways.
Dev. Biol
209
,
282
97
This content is only available via PDF.