As a member of Cnidaria, the body wall of hydra is structurally reduced to an epithelial bilayer with an intervening extracellular matrix (ECM). Biochemical and cloning studies have shown that the molecular composition of hydra ECM is similar to that seen in vertebrates and functional studies have demonstrated that cell-ECM interactions are important to developmental processes in hydra. Because vertebrate matrix metalloproteinases (MMPs) have been shown to have an important role in cell-ECM interactions, the current study was designed to determine whether hydra has homologues of these proteinases and, if so, what function these enzymes have in morphogenesis and cell differentiation in this simple metazoan. Utilizing a PCR approach, a single hydra matrix metalloproteinase, named HMMP was identified and cloned. The structure of HMMP was similar to that of vertebrate MMPs with an overall identity of about 35%. Detailed structural analysis indicated some unique features in (1) the cysteine-switch region of the prodomain, (2) the hinge region preceding the hemopexin domain, and (3) the hemopexin domain. Using a bacterial system, HMMP protein was expressed and folded to obtain an active enzyme. Substrate analysis studies indicated that recombinant HMMP could digest a number of hydra ECM components such as hydra laminin. Using a fluorogenic MMP substrate assay, it was determined that HMMP was inhibited by peptidyl hydroxamate MMP inhibitors, GM6001 and matlistatin, and by human recombinant TIMP-1. Whole-mount in situ studies indicated that HMMP mRNA was expressed in the endoderm along the entire longitudinal axis of hydra, but at relatively high levels at regions where cell-transdifferentiation occurred (apical and basal poles). Functional studies using GM6001 and TIMP-1 indicated that these MMP inhibitors could reversibly block foot regeneration. Blockage of foot regeneration was also observed using antisense thio-oligo nucleotides to HMMP introduced into the endoderm of the basal pole using a localized electroporation technique. Studies with adult intact hydra found that GM6001 could also cause the reversible de-differentiation or inhibition of transdifferentiation of basal disk cells of the foot process. Basal disk cells are adjacent to those endoderm cells of the foot process that express high levels of HMMP mRNA. In summary, these studies indicate that hydra has at least one MMP that is functionally tied to morphogenesis and cell transdifferentiation in this simple metazoan.

REFERENCES

Abramson
S. R.
,
Conner
G. E.
,
Nagase
H.
,
Neuhaus
I.
,
Woessner
J. F.
Jr
(
1995
)
Characterization of rat uterine matrilysin and its cDNA. Relationship to human pump-1 and activation of procollagenases.
J. Biol. Chem
270
,
16016
16022
Behrendtsen
O.
,
Werb
Z.
(
1997
)
Metalloproteinases regulate parietal endoderm differentiating and migrating in cultured mouse embryos.
Dev. Dynam
208
,
255
265
Benbow
U.
,
Buttice
G.
,
Nagase
H.
,
Kurkinen
M.
(
1996
)
Characterization of the 46-kDa intermediates of matrix metalloproteinase 3 (stromelysin 1) obtained by site-directed mutation of phenylalanine 83.
J. Biol. Chem
271
,
10715
10722
Bode
W.
(
1995
)
A helping hand for collagenases: the haemopexin-like domain.
Structure
3
,
527
530
Campbell
R. D.
(
1967
)
Tissue dynamics of steady state growth in Hydra littoralis. II. Patterns of tissue movement.
J. Morph
121
,
19
28
Cao
J.
,
Drews
M.
,
Lee
H. M.
,
Conner
C.
,
Bahou
W. F.
,
Zucker
S.
(
1998
)
The propeptide domain of membrane type 1 matrix metalloproteinase is required for binding of tissue inhibitor of metalloproteinases and for activation of pro-gelatinase A.
J. Biol. Chem
273
,
34745
34752
Clark
I. M.
,
Cawston
T. E.
(
1989
)
Fragments of human fibroblast collagenase. Purification and characterization.
Biochem. J
263
,
201
206
Crabbe
T.
,
Willenbrock
F.
,
Eaton
D.
,
Hynds
P.
,
Carne
A. F.
,
Murphy
G.
,
Docherty
A. J.
(
1992
)
Biochemical characterization of matrilysin. Activation conforms to the stepwise mechanisms proposed for other matrix metalloproteinases.
Biochemistry
31
,
8500
8507
Flanagan
W. M.
,
Kothavale
A.
,
Wagner
R. W.
(
1996
)
Effects of oligonucleotide, length, mismatches and mRNA levels on C-5 propyne-modified antisense potency.
Nucleic Acids Res
24
,
2936
2941
Ghiglione
C.
,
Lhomond
G.
,
Lepage
T.
,
Gache
C.
(
1994
)
Structure of the sea urchin hatching enzyme gene.
Eur. J. Biochem
219
,
845
854
Giannelli
G.
,
Falk-Marzillier
J.
,
Schiraldi
O.
,
Stetler-Stevenson
W. G.
,
Quaranta
V.
(
1997
)
Induction of cell migration by matrix metalloproteinase-2 cleavage of laminin-5.
Science
277
,
225
228
Bode
W.
(
1996
)
The C-terminal (haemopexin-like) domain structure of human gelatinase A (MMP2): structural implications for its function.
FEBS Lett
378
,
126
130
and
Gomis-Ruth
F. X.
,
Gohlke
U.
,
Betz
M.
,
Knauper
V.
,
Murphy
G.
,
Lopez-Otin
C.
,
Bode
W.
(
1996
)
The helping hand of collagenase-3 (MMP-13): A 2. 7 A crystal structure of its C-terminal haemopexin-like domain.
J. Molec. Biol
264
,
556
566
Grens
A.
,
Mason
E.
,
Marsh
J. L.
,
Bode
H. R.
(
1995
)
Evolutionary conservation of a cell fate specification gene: the Hydra achaete-scute hmolog has proneural activity in Drosophila.
Development
121
,
4027
4035
Grens
A.
,
Shimizu
H.
,
Hoffmeister
S. A.
,
Bode
H. R.
,
Fujisawa
T.
(
1999
)
The novel signal peptides, pedibin and Hym-346, lower positional value thereby enhancing foot formation in hydra.
Development
126
,
517
524
Grobelny
D.
,
Ponez
L.
,
Galardy
R. E.
(
1992
)
Inhibition of human skin fibroblast collagenase, thrmolysin, and Pseudomonas aeruginosa elastase by petide hydroxamic acids.
Biochemistry
31
,
7152
7154
Hobmayer
B.
,
Holstein
T. W.
,
David
C.N.
(
1997
)
Stimulation of tentacle and bud formation by the neuropeptide head activator in Hydra magnipapillata.
Dev. Biol
183
,
1
8
Holliday
L. S.
,
Welgus
H. G.
,
Fliszar
C. J.
,
Veith
G. M.
,
Jeffrey
J. J.
,
Gluck
S. L.
(
1997
)
Initiation of osteoclase bone resorption by interstitial collagenase.
J. Biol. Chem
272
,
22053
22058
Huang
W.
,
Suzuki
K.
,
Nagase
H.
,
Arumugam
S.
,
Van-Doren
S. R.
,
Brew
K.
(
1996
)
Folding and characterization of the amino-terminal domain of human tissue inhibitor of metalloproteinases-1 (TIMP-1) expressed at high yield in E.
coli. FEBS Lett
384
,
155
161
Imai
K.
,
Yokohama
Y.
,
Nakanishi
I.
,
Ohuchi
E.
,
Fujii
Y.
,
Nakai
N.
,
Okada
Y.
(
1995
)
Matrix metalloproteinase 7 (matrilysin) from human rectal carcinoma cells. Activation of the precursor, interaction with other matrix metalloproteinases and enzymic properties.
J. Biol. Chem
270
,
6691
6697
Itoh
Y.
,
Ito
A.
,
Iwata
K.
,
Tanzawa
K.
,
Mori
Y.
,
Nagase
H.
(
1998
)
Plasma membrane-bound tissue inhibitor of metalloproteinases (TIMP)-2 specifically inhibits matrix metalloproteinase 2 (gelatinase A) activated on the cell surface.
J. Biol. Chem
273
,
24360
24367
Knauper
V.
,
Wilhelm
S. M.
,
Seperack
P. K.
,
DeClerck
Y. A.
,
Langley
K. E.
,
Osthues
A.
,
Tschesche
H.
(
1993
)
Direct activation of human neutrophil procollagnease by recombinant stromelysis.
Biochem. J
295
,
581
586
Knauper
V.
,
Will
H.
,
Lopez-Otin
C.
,
Smith
B.
,
Atkinson
S. J.
,
Stanton
H.
,
Hembry
R. M.
,
Murphy
G.
(
1996
)
Cellular mechanisms for procollagenase-3 (MMP-13) activation. Evidence tht MT1-MMP (MMP-14) and gelatinase A (MMP-2) are able to generate active enzyme.
J. Biol. Chem
271
,
17124
17131
Laemmli
U. K.
(
1970
)
Cleavage of structural proteins during the assembly of the head of bacteriophage T4.
Nature
227
,
680
685
Li
J.
,
Brick
P.
,
OíHare
M. C.
,
Skarzynski
T.
,
Lloyd
L. F.
,
Cury
V. A.
,
Clark
I. M.
,
Bigg
H. F.
,
Hazleman
B. L.
,
Cawston
T. E.
(
1995
)
Structure of full-length porcine synovial collagenase reveals a C-terminal domain containing a calcium-linked, four-bladed beta-propeller.
Structure
3
,
541
549
Massova
I.
,
Kotra
L. P.
,
Fridman
R.
,
Mobashery
S.
(
1998
)
Matrix metalloproteinases: Structure, evolution, and diversification.
FASEB J
12
,
1075
1095
McGeehan
G.
,
Burkhart
W.
,
Anderegg
r.
,
Becherer
D.
,
Gillikin
J. W.
,
Graham
J. S.
(
1992
)
Sequencing and characterization of the Soybean leaf.
Plant Physiol.,
99
,
1179
1183
Muller
W. A.
(
1996
)
Head formation at the basal end and mirror-image pattern duplication in Hydra vulgaris.
Int. J. Dev. Biol
40
,
1119
1131
Murphy
G.
,
Allan
J. A.
,
Willenbrock
F.
,
Cockett
M. I.
,
O'Connell
J. P.
,
Docherty
A. J.
(
1992
)
The role of the C-terminal domain in collagenase and stromelysin specificity.
J. Biol. Chem
267
,
9612
9618
Murphy
G.
,
Nguyen
Q.
,
Cockett
M. I.
,
Atkinson
S. J.
,
Allan
J. A.
,
Knight
C. G.
,
Willenbrock
F.
,
Docherty
A. J.
(
1994
)
Assessment of the role of the fibronectin-like domain of gelatinase A by analysis of a deletion mutant.
J. Biol. Chem
269
,
6632
6636
Murphy
G.
,
Ward
R.
,
Gavrilovic
J.
,
Atkinson
S.
(
1992
)
Physiological mechanismsfor metalloproteinase activation.
Matrix Suppl
1
,
224
230
Murphy
G.
,
Willenbrock
F.
,
Ward
R. V.
,
Cockett
M. I.
,
Eaton
D.
,
Docherty
A. J.
(
1992
)
The C-terminal domain of 72 kDa gelatinase A is not required for catalysis, but is essential for membrane activation and modulates interactions with tissue inhibitors of metalloproteinases.
Biochem. J
283
,
637
641
Nomura
K.
,
Shimizu
T.
,
Kinoh
H.
,
Sendai
Y.
,
Inomata
M.
,
Suzuki
N.
(
1997
)
Sea urchin hatching enzyme (envelysin): cDNA cloning and deprivation of protein substrate specificity by autolytic degradation.
Biochemistry
36
,
7225
7238
Nomura
K.
,
Tanaka
H.
,
Kikkawa
Y.
,
Yamaguchi
M.
,
Suzuki
N.
(
1991
)
The specificity of sea urchin hatching enzyme (envelysin) places it in the mammalian matrix metalloproteinase family.
Biochemistry
30
,
6115
6123
Okada
Y.
,
Nagase
H.
,
Harris
E. D.
Jr
(
1986
)
A metalloproteinase from human rheumatoid synovial fibroblasts that digests connecive tissue matrix components. Purification and characterization.
J. Biol. Chem
261
,
14245
14255
Pei
D.
,
Weiss
S. J.
(
1995
)
Furin-dependent intracellular activation of the human stromelysin-3 zymogen.
Nature
375
,
244
247
Pei
D.
,
Weiss
S. J.
(
1996
)
Transmembrane-deletion mutants of the membrane-type matrix metalloproteinase-1 process progelatinase A andexpress intrinsic matrix-degrading activity.
J. Biol. Chem
271
,
9135
9140
Pilcher
B. K.
,
Dumin
J. A.
,
Sudbeck
B. D.
,
Krane
S. M.
,
Welgus
H. G.
,
Parks
W. C.
(
1997
)
The activity of collagenase-1 is required for keratinocyte migration on a Type I collagen matrix.
J. Cell Biol
137
,
1445
1457
Preissner
K. T.
,
May
A. E.
,
Wohn
K. D.
,
Germer
M.
,
Kanse
S. M.
(
1997
)
Molecular crosstalk between adhesion receptors and proteolytic cascades in vascular remoldelling.
Thromb Haemost
78
,
88
95
Rifkin
D. B.
,
Mazzieri
R.
,
Munger
J. S.
,
Noguera
I.
,
Sung
J.
(
1999
)
Proteolytic control of growth factor availability.
APMIS
107
,
80
85
Sang
Q. X.
(
1998
)
Complex role of matrix metalloproteinases in angiogenesis.
Cell Res
8
,
171
177
Sarras
M. P.
Jr
(
1996
)
BMP-1 and the astacin family of metalloproteinases: A potential link between the extracellular matrix, growth factors, and pattern formation.
BioEssays
18
,
439
442
Sarras
M. P.
Jr.
,
Yan
L.
,
Grens
A.
,
Zhang
X.
,
Agbas
A.
,
St. John
P. L.
,
Abrahamson
D. R.
(
1994
)
Cloning and biological function of laminin in Hydra.
Dev. Biol
164
,
312
324
Sarras
M. P.
Jr.
,
Zhang
X.
,
Huff
J. K.
,
Accavitti
M. A.
,
St. John
P. L.
,
Abrahamson
D. R.
(
1993
)
Extracellular matrix (mesoglea) of Hydra vulgaris III. Formation and function during morphogenesis of hydra cell aggregates.
Dev. Biol
157
,
383
398
Sarras
M. P.
Jr
,
Madden
M. E.
,
Zhang
X. M.
,
Gunwar
S.
,
Huff
J. K.
,
Hudson
B. G.
(
1991
)
Extracellular matrix (mesoglea) of Hydra vulgaris. I. Isolation and characterization.
Dev. Biol
148
,
481
494
Sarras
M. P.
Jr.
,
Meador
D.
,
Zhang
X. M.
(
1991
)
Extracellular matrix (mesoglea) of Hydra vulgaris. II. Influence of collagen and proteoglycan components on head regeneration.
Dev. Biol
148
,
495
500
Scalzo
C. M.
,
Verhage
H. G.
,
Jaffe
R. C.
(
1994
)
Expression and estrogen control of PUMP-1 mRNA in the cat uterus.
Endocr. J
2
,
229
235
Schaller
H. C.
,
Hermans
,
Borgmeyer
I.
,
Hoffmeister
S. A.
(
1996
)
Neuronal control of development in hydra.
Int. J. Dev. Biol
40
,
339
44
Schnaper
H. W.
(
1995
)
Balance between matrix synthesis and degradtion: a determinant of glomerulosclerosis.
Pediatr. Nephrol
9
,
104
111
Schwarzbauer
J.
(
1999
)
Basement membrane: Putting up the barriers.
Current Biology
9
,
242
–.
Springman
E. B.
,
Angleton
E. L.
,
Birkedal-Hansen
H.
,
Van-Wart
H. E.
(
1990
)
Multiple modes of activation of latent human fibroblast collagenase: evidence for the role of a Cys73 active-site zinc complex in latency and a “cysteine switch” mechanism for activation.
Proc. Natl. Acad. Sci. USA
87
,
364
368
Suzuki
K.
,
Enghild
J. J.
,
Morodomi
T.
,
Salvesen
G.
,
Nagase
H.
(
1990
)
Mechanisms of activation of tissue procollagenase by matrix metalloproteinase 3 (stromelysin).
Biochemistry
29
,
10261
10270
Suzuki
M.
,
Raab
G.
,
Moses
M. A.
,
Fernandez
C. A.
,
Klagsbrun
M.
(
1997
)
Matrix metalloproteinase-3 releases active heparin-binding EGF-like growth factor by cleavage at a specific juxtamembrane site.
J. Biol. Chem
272
,
31730
31737
Suzuki
K.
,
Kan
C. C.
,
Hung
W.
,
Gehring
M. R.
,
Brew
K.
,
Nagase
H.
(
1998
)
Expression of human pro-matrix metalloproteinase 3 that lacks the N-terminal 34 residues in Escherichia coli: autoactivation and interaction with tissue inhibitor of metalloproteinase 1 (TIMP-1).
J. Biol. Chem
379
,
185
191
Takino
T.
,
Sato
H.
,
Yamamoto
E.
,
Seiki
M.
(
1995
)
Cloning of a human gene potentially encoding a novel matrix metalloproteinase having a C-terminal transmembrane domain.
Gene
155
,
293
298
Tyagi
S. C.
,
Meyer
L.
,
Schmaltz
R. A.
,
Reddy
H. K.
,
Voelker
D. J.
(
1995
)
Proteinases and restenosis in the human coronary artery: extracellular matrix production exceeds the expression of proteolytic activity.
Atherosclerosis
116
,
43
57
Van Wart
H. E.
,
Birkedal-Hansen
H.
(
1990
)
The cysteine switch: a principle of regulation of metalloproteinase activity with potentialapplicability to the entire matrix metalloproteinase gene family.
Proc. Natl. Acad. Sci. USA
87
,
5578
5582
Wada
K.
,
Sato
H.
,
Kinoh
H.
,
Kajita
M.
,
Yamamoto
H.
,
Seiki
M.
(
1998
)
Cloning of three Caenorhabditis elegans genes potentially encoding novel matrix metalloproteinases.
Gene
211
,
57
62
Wagner
R. W.
(
1994
)
Gene inhibition using antisense oligodeoxynucleotides.
Nature
372
,
333
335
Werb
Z.
(
1999
)
ECM and cell surface proteolysis: Regulating cellular ecology.
Cell
91
,
439
442
Werb
Z.
,
Chin
J. R.
(
1998
)
Extracellular matrix remodeling during morphogenesis.
Ann N Y Acad. Sci
857
,
110
118
Werb
Z.
,
Vu
T. H.
,
Rinkenberger
J. L.
,
Coussens
L. M.
(
1999
)
Matrix-degrading proteases and angiogenesis during development and tumor formation.
APMIS
107
,
11
18
Whitelock
J. M.
,
Murdoch
A. D.
,
Iozzo
R. V.
,
Underwood
P. A.
(
1996
)
The degradation of human endothelial cell-derived perlecan and release of bound basic fibroblast growth factor by stromelysin, collagenase, plasmin, and heparanases.
J. Biol. Chem
271
,
10079
10086
Yan
L.
,
Pollock
G. H.
,
Nagase
H.
,
Sarras
M. P.
Jr
(
1995
).
A 25.7103 M rhydra metalloproteinase (HMP1), a member of the astacin family, localizes to the extracellular matrix of Hydra vulgaris in a head-specific manner and has a developmental function.
Development
121
,
1591
602
Yan
L.
,
Fei
K.
,
Zhang
J.
,
Dexter
S.
,
Sarras
M. P.
Jr
(
2000
)
Identification and characterization of hydra metalloproteinase 2 (HMP-2): a meprin-like astacin metalloproteinase that functions in foot morphogenesis.
Development
127
,
129
141
Zhao
W.
,
Byrne
M. H.
,
Boyce
B. F.
,
Krane
S. M.
(
1999
)
Bone resorption induced by parathyroid hormone is strikingly diminished in collagenase-resistant mice.
J. Clin. Invest
103
,
517
524
Zhang
X.
,
Hudson
B. G.
,
Sarras
M. P.
Jr
(
1994
)
Hydra cell aggregate development is blocked by selective fragments of fibronectin and Type IV collagen.
Dev. Biol
164
,
10
23
This content is only available via PDF.