Ecdysteroids regulate a wide variety of cellular processes during arthropod development, yet little is known about the genes involved in the biosynthesis of these hormones. Previous studies have suggested that production of 20-hydroxyecdysone in Drosophila and other arthropods involves a series of cytochrome P450 catalyzed hydroxylations of cholesterol. In this report, we show that the disembodied (dib) locus of Drosophila codes for a P450-like sequence. In addition, we find that dib mutant embryos have very low titers of ecdysone and 20-hydroxyecdysone (20E) and fail to express IMP-E1 and L1, two 20E-inducible genes, in certain tissues of the embryo. In situ hybridization studies reveal that dib is expressed in a complex pattern in the early embryo, which eventually gives way to restricted expression in the prothoracic portion of the ring gland. In larval and adult tissues, dib expression is observed in the prothoracic gland and follicle cells of the ovaries respectively, two tissues known to synthesize ecdysteroids. Phenotypic analysis reveals that dib mutant embryos produce little or no cuticle and exhibit severe defects in many late morphogenetic processes such as head involution, dorsal closure and gut development. In addition, we examined the phenotypes of several other mutants that produce defective embryonic cuticles. Like dib, mutations in the spook (spo) locus result in low embryonic ecdysteroid titers, severe late embryonic morphological defects, and a failure to induce IMP-E1. From these data, we conclude that dib and spo likely code for essential components in the ecdysone biosynthetic pathway and that ecdysteroids regulate many late embryonic morphogenetic processes such as cell movement and cuticle deposition.
The Drosophila disembodied gene controls late embryonic morphogenesis and codes for a cytochrome P450 enzyme that regulates embryonic ecdysone levels
V.M. Chavez, G. Marques, J.P. Delbecque, K. Kobayashi, M. Hollingsworth, J. Burr, J.E. Natzle, M.B. O'Connor; The Drosophila disembodied gene controls late embryonic morphogenesis and codes for a cytochrome P450 enzyme that regulates embryonic ecdysone levels. Development 1 October 2000; 127 (19): 4115–4126. doi: https://doi.org/10.1242/dev.127.19.4115
Download citation file:
Advertisement
Cited by
Development Journal Meeting 2022: From Stem Cells to Human Development
-JournalMeeting.png?versionId=3737)
Following a virtual meeting in 2020, we are delighted to announce that the fifth iteration of our popular Journal Meeting will be held from 11-14 September 2022 at the historic Wotton House, Surrey. Registration is open now.
Special Issue: The Immune System in Development and Regeneration
(update)-ImmuneSI.png?versionId=3737)
Our latest special issue is now complete. It showcases articles that add to the repertoire of immune cell functions during development, repair and regeneration, and provide insights into the developmental pathways leading to the generation and dispersal of these cells.
Propose a new Workshop
-GSWorkshop.png?versionId=3737)
Our Workshops bring together leading experts and early-career researchers from a range of scientific backgrounds. Applications are now open to propose Workshops for 2024, one of which will be held in a Global South country.
Preprints in Development
(update)-InPreprints.png?versionId=3737)
As part of our efforts to support the use of preprints and help curate the preprint literature, we are delighted to launch a new article type: ‘In preprints’. These pieces will discuss one or more recent preprints and place them in a broader context. You can read the first article here.
FocalPlane Network launched
-FocalPlaneNetworkLaunch.png?versionId=3737)
Like the Node Network, the aim of the FocalPlane Network is to facilitate promotion and networking as well as assist those seeking conference speakers, committee members, reviewers or collaborators. We hope that it will help promote diversity in the community. Find out more and join the Network here.