During anteroposterior patterning of the developing hindbrain, the anterior expression of 3′ Hox genes maps to distinct rhombomeric boundaries and, in many cases, is upregulated in specific segments. Paralogous genes frequently have similar anterior boundaries of expression but it is not known if these are controlled by common mechanisms. The expression of the paralogous Hoxa3 and Hoxb3 genes extends from the posterior spinal cord up to the rhombomere (r) 4/5 boundary and both genes are upregulated specifically in r5. However, in this study, we have found that Hoxa3 expression is also upregulated in r6, showing that there are differences in segmental expression between paralogues. We have used transgenic analysis to investigate the mechanisms underlying the pattern of segmental expression of Hoxa3. We found that the intergenic region between Hoxa3 and Hoxa4 contains several enhancers, which summed together mediate a pattern of expression closely resembling that of the endogenous Hoxa3 gene. One enhancer specifically directs expression in r5 and r6, in a manner that reflects the upregulation of the endogenous gene in these segments. Deletion analysis localized this activity to a 600 bp fragment that was found to contain a single high-affinity binding site for the Maf bZIP protein Krml1, encoded by the kreisler gene. This site is necessary for enhancer activity and when multimerized it is sufficient to direct a kreisler-like pattern in transgenic embryos. Furthermore the r5/r6 enhancer activity is dependent upon endogenous kreisler and is activated by ectopic kreisler expression. This demonstrates that Hoxa3, along with its paralog Hoxb3, is a direct target of kreisler in the mouse hindbrain. Comparisons between the Krml1-binding sites in the Hoxa3 and Hoxb3 enhancers reveal that there are differences in both the number of binding sites and way that kreisler activity is integrated and restricted by these two control regions. Analysis of the individual sites revealed that they have different requirements for mediating r5/r6 and dorsal roof plate expression. Therefore, the restriction of Hoxb3 to r5 and Hoxa3 to r5 and r6, together with expression patterns of Hoxb3 in other vertebrate species suggests that these regulatory elements have a common origin but have later diverged during vertebrate evolution.

Reference

Alexandre
D.
,
Clarke
J.
,
Oxtoby
E.
,
Yan
Y.-L.
,
Jowett
T.
,
Holder
N.
(
1996
)
Ectopic expression of Hoxa-1 in the zebrafish alters the fate of the mandibular arch neural crest and phenocopies a retinoic acid-induced phenotype.
Development
122
,
735
746
Baron
A.
,
Featherstone
M. S.
,
Hill
R. E.
,
Hall
A.
,
Galliot
B.
,
Duboule
D.
(
1987
).
Hox-1.6: a mouse homeo-box-containing gene member of the Hox-1 complex.
EMBO J
6
,
2977
2986
Blank
V.
,
Andrews
N.
(
1997
)
The Maf transcription factors: regulators of differentiation.
Trends in Biochemical Sciences
22
,
437
441
Carpenter
E. M.
,
Goddard
J. M.
,
Chisaka
O.
,
Manley
N. R.
,
Capecchi
M. R.
(
1993
).
Loss of Hoxa-1 (Hox-1.6) function results in the reorganization of the murine hindbrain.
Development
118
,
1063
1075
Chisaka
O.
,
Capecchi
M.
(
1991
).
Regionally restricted developmental defects resulting from targeted disruption of the mouse homeobox gene hox1.5.
Nature
350
,
473
479
Cordes
S. P.
,
Barsh
G. S.
(
1994
)
The mouse segmentation gene kr encodes a novel basic domain-leucine zipper transcription factor.
Cell
79
,
1025
1034
Duboule
D.
,
Baron
A.
,
Mahl
P.
,
Galliot
B.
(
1986
)
A new homeo-box is present in overlapping cosmid clones which define the mouse Hox-1 locus.
EMBO J
5
,
1973
1980
Dupe
V.
,
Davenne
M.
,
Brocard
J.
,
Dolle
P.
,
Mark
M.
,
Dierich
A.
,
Chambon
P.
,
Rijli
F.
(
1997
)
In vivo functional analysis of the Hoxa1 3′ retinoid response element (3RARE).
Development
124
,
399
410
Fraser
S.
,
Keynes
R.
,
Lumsden
A.
(
1990
)
Segmentation in the chick embryo hindbrain is defined by cell lineage restrictions.
Nature
344
,
431
435
Gaunt
S.
,
Miller
J.
,
Powell
D.
,
Duboule
D.
(
1986
)
Homeobox gene expression in mouse embryos varies with position by the primitive streak stage.
Nature
324
,
662
664
Gaunt
S. J.
(
1987
).
Homeobox gene Hox 1.5 expression in mouse embryos: earliest detection by in situ hybridization is during gastrulation.
Development
101
,
51
60
Gavalas
A.
,
Studer
M.
,
Lumsden
A.
,
Rijli
F.
,
Krumlauf
R.
,
Chambon
P.
(
1998
)
Hoxa1 and Hoxb1 synergize in patterning the hindbrain, cranial nerves and second pharyngeal arch.
Development
125
,
1123
1136
Gellon
G.
,
McGinnis
W.
(
1998
)
Shaping animal body plans in development and evolution by modulation of Hox expression patterns.
BioEssays
20
,
116
125
Goddard
J.
,
Rossel
M.
,
Manley
N.
,
Capecchi
M.
(
1996
)
Mice with targeted disruption of Hoxb1 fail to form the motor nucleus of the VIIth nerve.
Development
122
,
3217
3228
Godsave
S.
,
Dekker
E.-J.
,
Holling
T.
,
Pannese
M.
,
Boncinelli
E.
,
Durston
A.
(
1994
)
Expression patterns of Hoxb genes in the Xenopus embryo suggest roles in anteroposterior specification of the hindbrain and in dorsoventral patterning of the mesoderm.
Dev. Biol
166
,
465
476
Gould
A.
,
Itasaki
N.
,
Krumlauf
R.
(
1998
)
Initiation of rhombomeric Hoxb4 expression requires induction by somites and a retinoid pathway.
Neuron
21
,
39
51
Gould
A.
,
Morrison
A.
,
Sproat
G.
,
White
R.
,
Krumlauf
R.
(
1997
)
Positive cross-regulation and enhancer sharing: two mechanisms for specifying overlapping Hox expression patterns.
Genes Dev
11
,
900
913
Ho
I.-C.
,
Hodge
M.
,
Rooney
J.
,
Glimcher
L.
(
1996
)
The proto-oncogene c-maf is responsible for tissue-specific expression of Interleukin-4.
Cell
85
,
973
983
Hunt
P.
,
Gulisano
M.
,
Cook
M.
,
Sham
M.
,
Faiella
A.
,
Wilkinson
D.
,
Boncinelli
E.
,
Krumlauf
R.
(
1991
)
A distinct Hox code for the branchial region of the head.
Nature
353
,
861
864
Keynes
R.
,
Krumlauf
R.
(
1994
)
Hox genes and regionalization of the nervous system.
Annual Rev. Neurosc
17
,
109
132
Krumlauf
R.
(
1994
)
Hox genes in vertebrate development.
Cell
78
,
191
201
Lumsden
A.
,
Krumlauf
R.
(
1996
)
Patterning the vertebrate neuraxis.
Science
274
,
1109
1115
Maconochie
M.
,
Nonchev
S.
,
Studer
M.
,
Chan
S.-K.
,
Pöpperl
H.
,
Sham
M.-H.
,
Mann
R.
,
Krumlauf
R.
(
1997
)
Cross-regulation in the mouse HoxB complex: the expression of Hoxb2 in rhombomere 4 is regulated by Hoxb1.
Genes Dev
11
,
1885
1896
Manley
N.
,
Capecchi
M.
(
1995
)
The role of Hoxa-3 in mouse thymus and thyroid development.
Development
121
,
1989
2003
Manley
N.
,
Capecchi
M.
(
1997
)
Hox group 3 paralogous genes act synergistically in the formation of somitic and neural crest-derived structures.
Dev. Biol
192
,
274
288
Manley
N.
,
Capecchi
M.
(
1998
)
Hox group 3 paralogs regulate the development and migration of the thymus, thyroid and parathyroid glands.
Dev. Biol
195
,
1
15
Manzanares
M.
,
Cordes
S.
,
Kwan
C.-T.
,
Sham
M.-H.
,
Barsh
G.
,
Krumlauf
R.
(
1997
)
Segmental regulation of Hoxb3 by kreisler.
Nature
387
,
191
195
Mark
M.
,
Lufkin
T.
,
Vonesch
J.-L.
,
Ruberte
E.
,
Olivo
J.-C.
,
Dolle
P.
,
Gorry
P.
,
Lumsden
A.
,
Chambon
P.
(
1993
)
Two rhombomeres are altered in Hoxa-1 mutant mice.
Development
119
,
319
338
Marshall
H.
,
Studer
M.
,
Pöpperl
H.
,
Aparicio
S.
,
Kuroiwa
A.
,
Brenner
S.
,
Krumlauf
R.
(
1994
)
A conserved retinoic acid response element required for early expression of the homeobox gene Hoxb-1.
Nature
370
,
567
571
Moens
C. B.
,
Cordes
S. P.
,
Giorgianni
M. W.
,
Barsh
G. S.
,
Kimmel
C. B.
(
1998
)
Equivalence in the genetic control of hindbrain segmentation in fish and mouse.
Development
125
,
381
391
Moens
C. B.
,
Yan
Y.-L.
,
Appel
B.
,
Force
A. G.
,
Kimmel
C. B.
(
1996
)
valentino: a zebrafish gene required for normal hindbrain segmentation.
Development
122
,
3981
3990
Morrison
A.
,
Ariza-McNaughton
L.
,
Gould
A.
,
Featherstone
M.
,
Krumlauf
R.
(
1997
)
HOXD4 and regulation of the group 4 paralog genes.
Development
124
,
3135
3146
Nonchev
S.
,
Vesque
C.
,
Maconochie
M.
,
Seitanidou
T.
,
Ariza-McNaughton
L.
,
Frain
M.
,
Marshall
H.
,
Sham
M. H.
,
Krumlauf
R.
,
Charnay
P.
(
1996
)
Segmental expression of Hoxa-2 in the hindbrain is directly regulated by Krox-20.
Development
122
,
543
554
Ogino
H.
,
Yasuda
K.
(
1998
)
Induction of lens differentiation by activation of a bZIP transcription factor, L-Maf.
Science
280
,
115
118
Pöpperl
H.
,
Bienz
M.
,
Studer
M.
,
Chan
S.
,
Aparicio
S.
,
Brenner
S.
,
Mann
R.
,
Krumlauf
R.
(
1995
)
Segmental expression of Hoxb1 is controlled by a highly conserved autoregulatory loop dependent upon exd/Pbx.
Cell
81
,
1031
1042
Prince
V. E.
,
Moens
C. B.
,
Kimmel
C. B.
,
Ho
R. K.
(
1998
)
Zebrafish hox genes: expression in the hindbrain region of wild-type and mutants of the segmentation gene, valentino.
Development
125
,
393
406
Ruiz i Altaba
A.
(
1994
)
Pattern formation in the vertebrate neural plate.
Trends in Neurosciences
17
,
233
243
Schneider-Maunoury
S.
,
Seitanidou
T.
,
Charnay
P.
,
Lumsden
A.
(
1997
)
Segmental and neuronal architecture of the hindbrain of Krox-20 mouse mutants.
Development
124
,
1215
1226
Schneider-Maunoury
S.
,
Topilko
P.
,
Seitanidou
T.
,
Levi
G.
,
Cohen-Tannoudji
M.
,
Pournin
S.
,
Babinet
C.
,
Charnay
P.
(
1993
)
Disruption of Krox-20 results in alteration of rhombomeres 3 and 5 in the developing hindbrain.
Cell
75
,
1199
1214
Sham
M. H.
,
Vesque
C.
,
Nonchev
S.
,
Marshall
H.
,
Frain
M.
,
Das Gupta
R.
,
Whiting
J.
,
Wilkinson
D.
,
Charnay
P.
,
Krumlauf
R.
(
1993
).
The zinc finger gene Krox-20 regulates Hoxb-2 (Hox2.8) during hindbrain segmentation.
Cell
72
,
183
196
Sieweke
M.
,
Tekotte
H.
,
Frampton
J.
,
Graf
T.
(
1996
)
MafB is an interaction partner and repressor of Ets-1 that inhibits erythroid differentiation.
Cell
85
,
49
60
Studer
M.
,
Gavalas
A.
,
Marshall
H.
,
Ariza-McNaughton
L.
,
Rijli
F.
,
Chambon
P.
,
Krumlauf
R.
(
1998
)
Genetic interaction between Hoxa1 and Hoxb1 reveal new roles in regulation of early hindbrain patterning.
Development
125
,
1025
1036
Studer
M.
,
Lumsden
A.
,
Ariza-McNaughton
L.
,
Bradley
A.
,
Krumlauf
R.
(
1996
)
Altered segmental identity and abnormal migration of motor neurons in mice lacking Hoxb-1.
Nature
384
,
630
635
Swiatek
P. J.
,
Gridley
T.
(
1993
)
Perinatal lethality and defects in hindbrain development in mice homozygous for a targeted mutation of the zinc finger gene Krox-20.
Genes Dev
7
,
2071
2084
Theil
T.
,
Frain
M.
,
Gilardi-Hebenstreit
P.
,
Flenniken
A.
,
Charnay
P.
,
Wilkinson
D.
(
1998
)
Segmental expression of the EphA4 (Sek-1) receptor tyrosine kinase in the hindbrain is under the direct transcriptional control of Krox20.
Development
125
,
443
452
Vesque
C.
,
Maconochie
M.
,
Nonchev
S.
,
Ariza-McNaughton
L.
,
Kuroiwa
A.
,
Charnay
P.
,
Krumlauf
R.
(
1996
)
Hoxb-2 transcriptional activation by Krox-20 in vertebrate hindbrain requires an evolutionary conserved cis -acting element in addition to the Krox-20 site.
EMBO J
15
,
5383
5896
Whiting
J.
,
Marshall
H.
,
Cook
M.
,
Krumlauf
R.
,
Rigby
P. W. J.
,
Stott
D.
,
Allemann
R. K.
(
1991
).
Multiple spatially specific enhancers are required to reconstruct the pattern of Hox-2.6 gene expression.
Genes Dev
5
,
2048
2059
Yee
S.-P.
,
Rigby
P. W. J.
(
1993
)
The regulation of myogenin gene expression during the embryonic development of the mouse.
Genes Dev
7
,
1277
1289
Zhang
M.
,
Kim
H.-J.
,
Marshall
H.
,
Gendron-Maguire
M.
,
Lucas
A. D.
,
Baron
A.
,
Gudas
L. J.
,
Gridley
T.
,
Krumlauf
R.
,
Grippo
J. F.
(
1994
)
Ectopic Hoxa-1 induces rhombomere transformation in mouse hindbrain.
Development
120
,
2431
2442
This content is only available via PDF.