The marginal zone in Xenopus laevis is proposed to be patterned with dorsal mesoderm situated near the upper blastoporal lip and ventral mesoderm near the lower blastoporal lip. We determined the origins of the ventralmost mesoderm, primitive blood, and show it arises from all vegetal blastomeres at the 32-cell stage, including blastomere C1, a progenitor of Spemann's organizer. This demonstrates that cells located at the upper blastoporal lip become ventral mesoderm, not solely dorsal mesoderm as previously believed. Reassessment of extant fate maps shows dorsal mesoderm and dorsal endoderm descend from the animal region of the marginal zone, whereas ventral mesoderm descends from the vegetal region of the marginal zone, and ventral endoderm descends from cells located vegetal of the bottle cells. Thus, the orientation of the dorsal-ventral axis of the mesoderm and endoderm is rotated 90(degrees) from its current portrayal in fate maps. This reassessment leads us to propose revisions in the nomenclature of the marginal zone and the orientation of the axes in pre-gastrula Xenopus embryos.

Bertwistle
D.
,
Walmsley
M. E.
,
Read
E. M.
,
Pizzey
J. A.
,
Patient
R. K.
(
1996
)
GATA factors and the origins of adult and embryonic blood in Xenopus: responses to retinoic acid.
Mech. Dev
57
,
199
214
Christian
J. L.
,
McMahon
J. A.
,
McMahon
A. P.
,
Moon
R. T.
(
1991
)
Xwnt-8, a Xenopus Wnt-1/int-1 -related gene responsive to mesoderm inducing factors, may play a role in ventral mesodermal patterning during embryogenesis.
Dev
111
,
1045
1056
Cooke
J.
,
Smith
E.
(
1988
)
The restrictive effect of early exposure to lithium upon body pattern in Xenopus development, studied by quantitative anatomy and immunofluorescence.
Dev
102
,
85
99
Cooke
J.
,
Webber
J.A.
(
1985
)
Dynamics of the control of body pattern in the development of Xenopus laevis. I. Timing and pattern in the development of dorsoanterior and posterior blastomere pairs, isolated at the 4-cell stage.
J. Embryol. Exp. Morph
88
,
85
112
Dale
L.
,
Slack
J. M. W.
(
1987
)
Fate map for the 32-cell stage of Xenopus laevis.
Development
99
,
527
551
Dale
L.
,
Slack
J. M. W.
(
1987
)
Regional specification within the mesoderm of early embryos of Xenopus laevis.
Development
100
,
279
295
Gawantka
V.
,
Delius
H.
,
Hirschfeld
K.
,
Blumenstock
C.
,
Niehrs
C.
(
1995
)
Antagonizing the Spemann organizer: role of the homeobox gene Xvent −1.
EMBO J
14
,
6268
6279
Goldstein
B.
,
Freeman
G.
(
1997
)
Axis specification in animal development.
BioEssays
19
,
105
116
Heasman
J.
(
1997
)
Patterning the Xenopus blastula.
Development
124
,
4179
4191
Heim
R.
,
Tsien
R.
(
1995
)
Engineering green fluorescent protein for improved brightness, longer wavelengths and fluorescence resonance energy transfer.
Curr. Biology
6
,
178
182
Hemmati-Brivanlou
A.
,
Thomsen
G. H.
(
1995
)
Ventral mesodermal patterning in Xenopus embryos: expression patterns and activities of BMP-2 and BMP-4.
Dev. Genet
17
,
78
89
Kao
K.
,
Elinson
R. P.
(
1988
)
The entire mesodermal mantle behaves as Spemann's organizer in dorsoanterior enhanced Xenopus laevis embryos.
Dev. Biol
127
,
64
77
Keller
R. E.
(
1975
)
Vital dye mapping of the gastrula and neurula of Xenopus laevis. I. Prospective areas and morphogenetic movement of the superficial layer.
Dev. Biol
42
,
222
241
Keller
R. E.
(
1976
)
Vital dye mapping of the gastrula and neurula of Xenopus laevis. II. Prospective areas and morphogenetic movements of the deep layer.
Dev. Biol
51
,
118
137
Keller
R.
,
Cooper
M. S.
,
Danilchik
M.
,
Tibbetts Wilson
P.
(
1989
)
Cell intercalation during notochord development in Xenopus laevis.
J. Exp. Zool
251
,
134
154
Kelley
C.
,
Yee
K.
,
Harland
R.
,
Zon
L. I.
(
1994
)
Ventral expression of GATA-1 and GATA-2 in the Xenopus embryo defines induction of hematopoietic mesoderm.
Dev. Biol
165
,
193
205
Maeno
M.
,
Ong
R. C.
,
Kung
H.-F.
(
1992
)
Positive and negative regulation of the differentiation of ventral mesoderm for erythrocytes in Xenopus.
Dev. Growth Differ
34
,
567
577
Maeno
M.
,
Ong
R. C.
,
Xue
Y.
,
Nishimatsu
S.-I.
,
Ueno
N.
,
Kung
H.-F.
(
1994
)
Regulation of primary erythropoiesis in the ventral mesoderm of Xenopus gastrula embryo: evidence for the expression of a stimulatory factor(s) in animal pole tissue.
Dev. Biol
161
,
522
529
Moody
S. A.
(
1987
)
Fates of the blastomeres of the 16-cell stage Xenopus embryo.
Dev. Biol
119
,
560
578
Moody
S. A.
(
1987
)
Fates of the blastomeres of the 32-cell-stage Xenopus embryo.
Dev. Biol
122
,
300
319
Moos
M.
Jr.
,
Wang
S.
,
Krinks
M.
(
1995
)
Anti-dorsalizing morphogenetic protein is a novel TGF-homolog expressed in the Spemann organizer.
Development
121
,
4293
4301
Nakamura
O.
,
Kishiyama
K.
(
1971
)
Prospective fates of the blastomeres at the 32 cell stage of Xenopus laevis embryos.
Proc. Japan Acad
47
,
407
412
Salic
A.
,
Kroll
K.
,
Evans
L. M.
,
Kirschner
M. W.
(
1997
)
Sizzled: a secreted Xwnt8 antagonist expressed in the ventral marginal zone of Xenopus embryos.
Development
124
,
4739
4748
Sasai
Y.
,
Lu
B.
,
Steinbesser
H.
,
Geissert
D.
,
Gont
L.
,
De Robertis
E. M.
(
1994
)
Xenopus chordin: A novel dorsalizing factor activated by organizer-specific homeobox genes.
Cell
79
,
779
790
Scharf
S. R.
,
Rowning
B.
,
Wu
M.
,
Gerhart
J. C.
(
1989
)
Hyperdorsoanterior embryos from Xenopus eggs treated with D2O.
Dev. Biol
134
,
175
188
Shih
J.
,
Keller
R.
(
1992
)
Patterns of cell motility in the organizer and dorsal marginal zone of Xenopus laevis.
Development
116
,
915
930
Smith
J. C.
(
1989
)
Mesoderm induction and mesoderm-inducing factors in early amphibian development.
Development
105
,
665
677
Smith
J. C.
,
Slack
J. M. W.
(
1983
)
Dorsalization and neural induction: properties of the organizer in Xenopus laevis.
J. Embryol. Exp. Morphol
78
,
299
317
Smith
W. C.
,
Harland
R. M.
(
1991
)
Injected Xwnt-8 RNA acts early in Xenopus embryos to promote formation of a vegetal dorsalizing center.
Cell
67
,
753
765
Smith
W. C.
,
Harland
R. M.
(
1992
)
Expression cloning of noggin, a new dorsalizing factor localized to the Spemann organizer in Xenopus embryos.
Cell,
70
,
828
840
Tracey
W. D.
Jr.
,
Pepling
M. E.
,
Thomsen
G. H.
,
Gergen
J. P.
(
1998
)
A Xenopus homologue of aml-1 reveals unexpected patterning mechanisms leading to the formation of embryonic blood.
Development
125
,
1371
1380
Turpen
J. B.
,
Kelley
C. M.
,
Mead
P. E.
,
Zon
L. I.
(
1997
)
Bipotential primitive-definitive hematopoietic progenitors in the vertebrate embryo.
Immunity,
7
,
325
334
Vodicka
M. A.
,
Gerhart
J. C.
(
1995
)
Blastomere derivation and domains of gene expression in the Spemann organizer of Xenopus laevis.
Development
121
,
3505
3518
Walmsley
M. E.
,
Guille
M. J.
,
Bertwistle
D.
,
Smith
J. C.
,
Pizzey
J. A.
,
Patient
R. K.
(
1994
)
Negative control of Xenopus GATA-2 by activin and noggin with eventual expression in precursors of the ventral blood islands.
Development
120
,
2519
2529
Yamaguchi
Y.
,
Shinagawa
A.
(
1989
)
Marked alteration at midblastula transition in the effect of lithium on formation of the larval body pattern of Xenopus laevis.
Dev. Growth Differ
31
,
531
541
Zernicka-Goetz
M.
,
Pines
J.
,
Ryan
K.
,
Siemering
K. R.
,
Haseloff
M. J.
,
Evans
M. J.
,
Gurdon
J. B.
(
1996
)
An indelible lineage marker for Xenopus using a mutated green fluorescent protein.
Development
122
,
3719
3724
Zhang
C.
,
Evans
T.
(
1996
)
BMP-like signals are required after the mid-blastula transition for blood cell development.
Dev. Genet
18
,
267
278
This content is only available via PDF.