The regulation of cardiac gene expression by GATA zinc finger transcription factors is well documented in vertebrates. However, genetic studies in mice have failed to demonstrate a function for these proteins in cardiomyocyte specification. In Drosophila, the existence of a cardiogenic GATA factor has been implicated through the analysis of a cardial cell enhancer of the muscle differentiation gene D-mef2. We show that the GATA gene pannier is expressed in the dorsal mesoderm and required for cardial cell formation while repressing a pericardial cell fate. Ectopic expression of Pannier results in cardial cell overproduction, while co-expression of Pannier and the homeodomain protein Tinman synergistically activate cardiac gene expression and induce cardial cells. The related GATA4 protein of mice likewise functions as a cardiogenic factor in Drosophila, demonstrating an evolutionarily conserved function between Pannier and GATA4 in heart development.
The zinc finger proteins Pannier and GATA4 function as cardiogenic factors in Drosophila
K. Gajewski, N. Fossett, J.D. Molkentin, R.A. Schulz; The zinc finger proteins Pannier and GATA4 function as cardiogenic factors in Drosophila. Development 15 December 1999; 126 (24): 5679–5688. doi: https://doi.org/10.1242/dev.126.24.5679
Download citation file:
Advertisement
Cited by
Pathway to Independence programme

We’re excited to announce our new Pathway to Independence programme, aimed at supporting postdocs as they go on the job market. Find out more about the scheme in our Editorial.
Call for papers: Metabolic and Nutritional Control of Development and Regeneration

We are welcoming submissions for our next special issue, which will focus on metabolic and nutritional control of development and regeneration. Submission deadline: 15 May 2023.
Webinar: Increasing the visibility and impact of your research
-HUBSwebinar.jpg?versionId=4486)
Would you like to increase the visibility and impact of your research and raise your profile internationally? If so, register for the very practical webinar we are running in association with HUBS on 23 February 2023.
Transitions in development: Daniel Grimes

Daniel Grimes’s lab studies the consequences of ciliary mutations, including left-right patterning defects and scoliosis. We interviewed Daniel to find out more about his career path, his experience of becoming a group leader and the influence of Jurassic Park.
Preprints in Development
(update)-InPreprints.png?versionId=4486)
As part of our efforts to support the use of preprints and help curate the preprint literature, we are delighted to launch a new article type: ‘In preprints’. These pieces will discuss one or more recent preprints and place them in a broader context.