Cell migration during embryogenesis involves two populations of cells: the migrating cells and the underlying cells that provide the substratum for migration. The formation of the Drosophila larval midgut involves the migration of the primordial midgut cells along a visceral mesoderm substratum. We show that integrin adhesion receptors are required in both populations of cells for normal rates of migration. In the absence of the PS integrins, the visceral mesoderm is disorganised, the primordial midgut cells do not display their normal motile appearance and their migration is delayed by 2 hours. Removing PS integrin function from the visceral mesoderm alone results in visceral mesoderm disorganization, but only causes a modest delay in migration and does not affect the appearance of the migrating cells. Removing PS integrin function from the migrating cells causes as severe a delay in migration as the complete loss of PS integrin function. The functions of PS1 and PS2 are specific in the two tissues, endoderm and mesoderm, since they cannot substitute for each other. In addition there is a partial redundancy in the function of the two PS integrins expressed in the endoderm, PS1 (alphaPS1betaPS) and PS3 (alphaPS3betaPS), since loss of just one alpha subunit in the midgut results in either a modest delay (alphaPS1) or no effect (alphaPS3). We have also examined the roles of small GTPases in promoting migration of the primordial midgut cells. We find that dominant negative (N17) versions of Rac and Cdc42 cause a very similar defect in migration as loss of integrins, while those of Rho and Ras have no effect. Thus integrins are involved in mediating migration by creating an optimal substratum for adhesion, adhering to that substratum and possibly by activating Rac and Cdc42.

Bauer
J. F.
,
Varner
J.
,
Schreiner
C.
,
Kornberg
L.
,
Nicholas
R.
,
Juliano
R. L.
(
1993
)
Functional role of the cytoplasmic domain of the integrin5subunit.
J. Cell Biol
122
,
209
221
Brabant
M. C.
,
Brower
D. L.
(
1993
)
PS2 Integrin Requirements in Drosophila Embryo and Wing Morphogenesis.
Dev. Biol
157
,
49
59
Brand
A. H.
,
Perrimon
N.
(
1993
)
Targeted gene expression as a means of altering cell fates and generating dominant phenotypes.
Development
118
,
401
415
Brower
D. L.
,
Bunch
T. A.
,
Mukai
L.
,
Adamson
T. E.
,
Wehrli
M.
,
Lam
S.
,
Friedlander
E.
,
Roote
C. E.
,
Zusman
S.
(
1995
)
Nonequivalent requirements for PS1 and PS2 integrin at cell attachments in Drosophila: genetic analysis of thePS1integrin subunit.
Development
121
,
1311
1320
Brower
D. L.
,
Smith
R. J.
,
Wilcox
M.
(
1980
)
A monoclonal antibody specific for diploid epithelial cells in Drosophila.
Nature
285
,
403
405
Brown
N. H.
(
1993
)
Integrins hold Drosophila together.
BioEssays
15
,
383
390
Brown
N. H.
(
1994
)
Null mutations in thePS2and PSintegrin subunit genes have distinct phenotypes.
Development
120
,
1221
1231
Bunch
T. A.
,
Salatino
R.
,
Engelsgjerd
M. C.
,
Mukai
L.
,
West
R. F.
,
Brower
D. L.
(
1992
)
Characterization of mutant alleles of myospheroid, the gene encoding thesubunit of the Drosophila PS integrins.
Genetics
132
,
519
528
Chou
T. B.
,
Perrimon
N.
(
1992
)
Use of a yeast site-specific recombinase to produce female germline chimeras in Drosophila.
Genetics
131
,
643
653
Clark
E. A.
,
Brugge
J. S.
(
1995
)
Integrins and signal transduction pathways: the road taken.
Science
268
,
233
239
Clark
E. A.
,
King
W. G.
,
Brugge
J. S.
,
Symons
M.
,
Hynes
R. O.
(
1998
)
Integrin-mediated signals regulated by members of the Rho family of GTPases.
J. Cell Biol
142
,
573
586
Darribere
T.
,
Guida
K.
,
Lajarva
H.
,
Johnson
K. E.
,
Yamada
K. M.
,
Thiery
J. P.
,
Boucaut
J. C.
(
1990
)
In vivo analyses of integrinsubunit function in fibronectin matrix assembly.
J. Cell Biol
110
,
1813
1823
Dunin Borkowski
O. M.
,
Brown
N. H.
,
Bate
M.
(
1995
)
Anterior-posterios subdivision and the diversification of the mesoderm in Drosophila.
Development
121
,
4183
4193
Dunin-Borkowski
O. M.
,
Brown
N. H.
(
1995
)
Mammalian CD2 is an effective heterologous marker of the cell surface in Drosophila.
Dev. Biol
168
,
689
693
Eaton
S.
,
Auvinen
P.
,
Luo
L.
,
Jan
Y. N.
,
Simons
K.
(
1995
)
CDC42 and Rac1 control different actin-dependent processes in the Drosophila wing disc epithelium.
J. Cell Biol
131
,
151
164
Farnsworth
C. L.
,
Feig
L. A.
(
1991
)
Dominant inhibitory mutations in the Mg2+binding site of RasHprevent its activation by GTP.
Mol. Cell Biol
11
,
4822
4829
Fassler
R.
,
Meyer
M.
(
1995
)
Consequences of lack of1 integrin gene expression in mice.
Genes Dev
9
,
1896
1908
Felsenfeld
D. P.
,
Choquet
D.
,
Sheetz
M. P.
(
1996
)
Ligand binding regulates the directed movement of1integrins on fibroblasts.
Nature
383
,
438
44
Georgias
C.
,
Wasser
M.
,
Hinz
U.
(
1997
)
A basic-helix-loop-helix protein expressed in precursors of Drosophila longitudinal visceral muscles.
Mech. Dev
69
,
115
124
Greig
S.
,
Akam
M.
(
1993
)
Homeotic genes autonomously specify one aspect of pattern in the Drosophila mesoderm.
Nature
362
,
630
632
Hanks
S. K.
,
Polte
T. R.
(
1997
)
Signaling through focal adhesion kinase.
BioEssays
19
,
137
145
Harden
N.
,
Loh
H. Y.
,
Chia
W.
,
Lim
L.
(
1995
)
A dominant inhibitory version of the small GTP-binding protein Rac disrupts cytoskeletal structures and inhibits developmental cell shape changes in Drosophila.
Development
121
,
903
914
Hidalgo
A.
,
Urban
J.
,
Brand
A. H.
(
1995
)
Targeted ablation of glia disrupts axon tract formation in the Drosophila CNS.
Development
121
,
3703
3712
Hildebrand
J. D.
,
Taylor
J. M.
,
Parsons
J. T.
(
1996
)
An SH3 domain-containing GTPase-activating protein for Rho and CDC42 associates with focal adhesion kinase.
Mol. Cell Biol
16
,
3169
3178
Hotchin
N. A.
,
Hall
A.
(
1995
)
The assembly of integrin adhesion complexes require both extracellular matrix and intracellular Rho/Rac GTPases.
J. Cell Biol
131
,
1857
1865
Huttenlocher
A.
,
Sandborg
R. R.
,
Horwitz
A. F.
(
1995
)
Adhesion in cell migration.
Curr. Opin. Cell Biol
7
,
697
706
Hynes
R. O.
(
1992
)
Integrins: versatility, modulation, and signaling in cell adhesion.
Cell
69
,
11
25
Keely
P. J.
,
Westwick
J. K.
,
Whitehead
I. P.
,
Der
C. J.
,
Parise
L. V.
(
1997
)
Cdc42 and Rac1 induce integrin-mediated cell motility and invasiveness through PI(3)K.
Nature
390
,
632
635
Klinghoffer
R. A.
,
Sachsenmaier
C.
,
Cooper
J. A.
,
Soriano
P.
(
1999
)
Src family kinases are required for integrin but not PDGFR signal transduction.
EMBOJ
18
,
2459
2471
Lauffenburger
D. A.
,
Horwitz
A. F.
(
1996
)
Cell Migration: A Physically Integrated Molecular Process.
Cell
84
,
359
369
Lee
T.
,
Feig
L.
,
Montell
D. J.
(
1996
)
Two distinct roles for Ras in a developmentally regulated cell migration.
Development
122
,
409
418
Luo
L.
,
Liao
Y. J.
,
Jan
L. Y.
,
Jan
Y. N.
(
1994
)
Distinct morphogenetic functions of similar small GTPases: Drosophila Drac1 is involved in axonal outgrowth and myoblast fusion.
Genes Dev
8
,
1787
1802
Martin-Bermudo
M. D.
,
Brown
N.H.
(
1999
)
Uncoupling integrin adhesion and signaling: thePScytoplasmic domain is sufficient to regulate gene expression in the Drosophila embryo.
Genes Dev
13
,
729
739
Martin-Bermudo
M. D.
,
Brown
N. H.
(
1996
)
Intracellular signals direct integrin localization to sites of function in embryonic muscles.
J. Cell. Biol
134
,
217
226
Martin-Bermudo
M. D.
,
Dunin-Borkowski
O. M.
,
Brown
N.H.
(
1997
)
Specificity of PS integrin function during embryogenesis resides in thesubunit extracellular domain.
EMBO J
16
,
4184
4193
Michiels
F.
,
Habets
G. G.
,
Stam
J. C.
,
van der Kammen
R. A.
,
Gollard
J. C.
(
1995
)
A role for Rac in Tiam 1-induced membrane ruffling and invasion.
Nature
375
,
338
340
Miyamoto
S.
,
Akiyama
S. K.
,
Yamada
K. M.
(
1995
)
Synergistic roles for receptor occupancy and aggregation in integrin transmembrane function.
Science
267
,
883
885
Murphy
A. M.
,
Montell
D. J.
(
1996
)
Cell type-specific roles for Cdc42, Rac, and RhoL in Drosophila oogenesis.
J. Cell Biol
133
,
617
630
Nobes
C. D.
,
Hall
A.
(
1995
)
Rho, Rac and Cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia.
Cell
81
,
53
62
Palecek
S. P.
,
Loftus
J. C.
,
Ginsberg
M. H.
,
Lauffenburger
D. A.
,
Horwitz
A.
(
1997
)
Integrin-ligand binding properties govern cell migration speed through cell-substratum adhesiveness.
Nature
385
,
537
540
Prokop
A.
,
Martin-Bermudo
M. D.
,
Bate
M.
,
Brown
N. H.
(
1998
)
In Drosophila embryos, the absence of the PS integrins or laminin A affects the extracellular adhesion of hemiadherens and neuromuscular junctions, but not their intracellular assembly.
Dev. Biol
196
,
58
76
Qiu
R. G.
,
Chen
J.
,
Kirn
D.
,
McCormick
F.
,
Symons
M.
(
1995
)
An essential role for Rac in Ras transformation.
Nature
374
,
457
459
Reuter
R.
,
Grunewald
B.
,
Leptin
M.
(
1993
)
A role for mesoderm in endodermal migration and morphogenesis in Drosophila.
Development
119
,
1135
1145
Roote
C. E.
,
Zusman
S.
(
1995
)
Functions for PS integrins in tissue adhesion, migration, and shape changes during early embryonic development in Drosophila.
Dev. Biol
169
,
322
336
Stark
K. A.
,
Yee
G. H.
,
Roote
C. E.
,
Williams
E. L.
,
Zusman
S.
,
Hynes
R. O.
(
1997
)
A novelintegrin subunit associates with PS and functions in tissue morphogenesis and movement during Drosophila development.
Development
124
,
4583
4594
Strutt
D. I.
,
Weber
U.
,
Mlodzik
M.
(
1997
)
The role of RhoA in tissue polarity and Frizzled signalling.
Nature
387
,
292
295
Takaishi
K.
,
Kikuchi
A.
,
Kuroda
S.
,
Kotani
K.
,
Sasaki
T.
,
Takai
Y.
(
1993
)
Involvement of rho p21 and its inhibitory GDP/GTP exchange protein (rho GDI) in cell motility.
Mol. Cell Biol
13
,
72
79
Tepass
U.
,
Hartenstein
V.
(
1994
)
Epithelium formation in the Drosophila midgut depends on the interaction of endoderm and mesoderm.
Development
120
,
579
590
Yamada
K. M.
,
Geiger
B.
(
1997
)
Molecular interactions in cell adhesion complexes.
Curr. Biol
9
,
76
85
Zipkin
I. D.
,
Kindt
R. M.
,
Kenyon
C. J.
(
1997
)
Role of a new Rho family member in cell migration and axon guidance in C. elegans.
Cell
90
,
883
894
This content is only available via PDF.