We have characterized the cell movements and prospective cell identities as neural folds fuse during neural tube formation in Xenopus laevis. A newly developed whole-mount, two-color fluorescent RNA in situ hybridization method, visualized with confocal microscopy, shows that the dorsal neural tube gene xpax3 and the neural-crest-specific gene xslug are expressed far lateral to the medial site of neural fold fusion and that expression moves medially after fusion. To determine whether cell movements or dynamic changes in gene expression are responsible, we used low-light videomicroscopy followed by fluorescent in situ and confocal microscopy. These methods revealed that populations of prospective neural crest and dorsal neural tube cells near the lateral margin of the neural plate at the start of neurulation move to the dorsal midline using distinctive forms of motility. Before fold fusion, superficial neural cells apically contract, roll the neural plate into a trough and appear to pull the superficial epidermal cell sheet medially. After neural fold fusion, lateral deep neural cells move medially by radially intercalating between other neural cells using two types of motility. The neural crest cells migrate as individual cells toward the dorsal midline using medially directed monopolar protrusions. These movements combine the two lateral populations of neural crest into a single medial population that form the roof of the neural tube. The remaining cells of the dorsal neural tube extend protrusions both medially and laterally bringing about radial intercalation of deep and superficial cells to form a single-cell-layered, pseudostratified neural tube. While ours is the first description of medially directed cell migration during neural fold fusion and re-establishment of the neural tube, these complex cell behaviors may be involved during cavitation of the zebrafish neural keel and secondary neurulation in the posterior axis of chicken and mouse.

Reference

Reference
Bang
A. G.
,
Papalopulu
N.
,
Kintner
C.
,
Goulding
M. D.
(
1997
)
Expression of Pax-3 is initiated in the early neural plate by posteriorizing signals produced by the organizer and by posterior non-axial mesoderm.
Development
124
,
2075
2085
Bush
K. T.
,
Lynch
F. J.
,
DeNittis
A. S.
,
Steinberg
A. B.
,
Lee
H. Y.
,
Nagele
R. G.
(
1990
)
Neural tube formation in the mouse: a morphometric and computerized three-dimensional reconstruction study of the relationship between apical constriction of neuroepithelial cells and the shape of the neuroepithelium.
Anat. Embryol
181
,
49
58
Chen
Y.
,
Grunz
H.
(
1997
)
The final determination of Xenopus ectoderm depends on intrinsic and external positional information.
Int. J. Dev. Biol
41
,
525
528
Chitnis
A.
,
Henrique
D.
,
Lewis
J.
,
Ish-Horowicz
D.
,
Kintner
C.
(
1995
)
Primary neurogenesis in Xenopus embryos regulated by a homologue of the Drosophila neurogenic gene Delta [see comments].
Nature
375
,
761
766
Copp
A. J.
(
1994
)
Genetic models of mammalian neural tube defects.
Ciba Found. Symp
181
,
118
34
Copp
A. J.
,
Brook
F. A.
,
Estibeiro
J. P.
,
Shum
A. S.
,
Cockroft
D. L.
(
1990
)
The embryonic development of mammalian neural tube defects.
Prog. Neurobiol
35
,
363
403
Costanzo
R.
,
Watterson
R. L.
,
Schoenwolf
G. C.
(
1982
)
Evidence that secondary neurulation occurs autonomously in the chick embryo.
J. Exp. Zool
219
,
233
240
Elul
T. M.
,
Koehl
M. A. R.
,
Keller
R. E.
(
1997
)
Cellular mechanism underlying neural convergence and extension in Xenopus laevis embryos.
Dev. Biol
191
,
243
258
Ferreiro
B.
,
Kintner
C.
,
Zimmerman
K.
,
Anderson
D.
,
Harris
W. A.
(
1994
)
XASH genes promote neurogenesis in Xenopus embryos.
Development
120
,
3649
3655
Fouquet
B.
,
Herrmann
H.
,
Franz
J. K.
,
Franke
W. W.
(
1988
)
Expression of intermediate filament proteins during development of Xenopus laevis. III. Identification of mRNAs encoding cytokeratins typical of complex epithelia.
Development
104
,
533
548
Goulding
M. D.
,
Chalepakis
G.
,
Deutsch
U.
,
Erselius
J. R.
,
Gruss
P.
(
1991
)
Pax-3, a novel murine DNA binding protein expressed during early neurogenesis.
EMBO J
10
,
1135
1147
Goulding
M. D.
,
Lumsden
A.
,
Gruss
P.
(
1993
)
Signals from the notochord and floor plate regulate the region-specific expression of two Pax genes in the developing spinal cord.
Development
117
,
1001
1016
Harland
R. M.
(
1991
)
In situ hybridization: an improved whole-mount method for Xenopus embryos.
Methods Cell Biol
36
,
685
695
Hartenstein
V.
(
1989
)
Early neurogenesis in Xenopus: the spatio-temporal pattern of proliferation and cell lineages in the embryonic spinal cord.
Neuron
3
,
399
411
Holland
N. D.
,
Panganiban
G.
,
Henyey
E. L.
,
Holland
L. Z.
(
1996
)
Sequence and developmental expression of AmphiDll, an amphioxus Distal-less gene transcribed in the ectoderm, epidermis and nervous system: insights into evolution of craniate forebrain and neural crest.
Development
122
,
2911
2920
Hopman
A. H. N.
,
Ramaekers
F. C. S.
,
Speel
E. J. M.
(
1998
)
Rapid synthesis of biotin-, digoxigenin-, trinitrophenyl-, and fluorochrome-labeled tyramides and their application for in situ hybridization using CARD amplification.
J. Histochem. Cytochem
46
,
771
777
Jacobs
W.
,
Dhaene
K.
,
Van Marck
E.
(
1998
)
Tyramine-amplified immunohistochemical testing using ‘homemade’ biotinylated tyramine is highly sensitive and cost-effective [see comments].
Arch. Pathol. Lab. Med
122
,
642
643
Jacobson
A. G.
,
Gordon
R.
(
1976
)
Changes in the shape of thedeveloping vertebrate nervous system analyzed experimentally, mathematically, and by computer simulation.
J. Exp. Zool
197
,
191
246
Jamrich
M.
,
Sargent
T. D.
,
Dawid
I. B.
(
1987
)
Cell-type-specific expression of epidermal cytokeratin genes during gastrulation of Xenopus laevis.
Genes Dev
1
,
124
132
Jonas
E.
,
Sargent
T. D.
,
Dawid
I. B.
(
1985
)
Epidermal keratin gene expressed in embryos of Xenopus laevis.
Proc. Natl. Acad. Sci. USA
82
,
5413
5417
Keller
R.
,
Shih
J.
,
Sater
A.
(
1992
)
The cellular basis of the convergence and extension of the Xenopus neural plate.
Dev. Dyn
193
,
199
217
Keller
R.
,
Shih
J.
,
Sater
A.
(
1992
)
The cellular basis of the convergence and extension of the Xenopus neural plate.
Dev. Dyn
193
,
199
217
Kerstens
H. M.
,
Poddighe
P. J.
,
Hanselaar
A. G.
(
1995
)
A novel in situ hybridization signal amplification method based on the deposition of biotinylated tyramine.
J. Histochem. Cytochem
43
,
347
352
Kimmel
C. B.
,
Warga
R. M.
,
Kane
D. A.
(
1994
)
Cell cycles and clonal strings during formation of the zebrafish central nervous system.
Development
120
,
265
276
Knecht
A. K.
,
Harland
R. M.
(
1997
)
Mechanisms of dorsal-ventral patterning in noggin-induced neural tissue.
Development
124
,
2477
2488
Krotoski
D. M.
,
Fraser
S. E.
,
Bronner-Fraser
M.
(
1988
)
Mapping of neural crest pathways in Xenopus laevis using inter-and intra-specific cell markers.
Dev. Biol
127
,
119
132
Lawson
A.
,
England
M. A.
(
1998
)
Neural fold fusion in the cranial region of the chick embryo.
Dev. Dyn
212
,
473
481
Poznanski
A.
,
Minsuk
S.
,
Stathopoulos
D.
,
Keller
R.
(
1997
)
Epithelial cell wedging and neural trough formation are induced planarly in Xenopus, without persistent vertical interactions with mesoderm.
Dev. Biol
189
,
256
269
Sausedo
R. A.
,
Schoenwolf
G. C.
(
1994
)
Quantitative analyses of cell behaviors underlying notochord formation and extension in mouse embryos.
Anat. Rec
239
,
103
112
Schoenwolf
G. C.
(
1984
)
Histological and ultrastructural studies of secondary neurulation in mouse embryos.
Am. J. Anat
169
,
361
376
Schoenwolf
G. C.
,
Alvarez
I. S.
(
1989
)
Roles of neuroepithelial cell rearrangement and division in shaping of the avian neural plate.
Development
106
,
427
439
Schoenwolf
G. C.
,
Delongo
J.
(
1980
)
Ultrastructure of secondary neurulation in the chick embryo.
Am. J. Anat
158
,
43
63
Schoenwolf
G. C.
,
Smith
J. L.
(
1990
)
Mechanisms of neurulation: traditional viewpoint and recent advances.
Development
109
,
243
270
Schoenwolf
G. C.
,
Smith
J. L.
(
1990
)
Mechanisms of neurulation: traditional viewpoint and recent advances.
Development
109
,
243
270
Schroeder
T. E.
(
1970
)
Neurulation in Xenopus laevis. An analysis and model based upon light and electron microscopy.
J. Embryol. Exp. Morphol
23
,
427
462
Schroeder
T. E.
(
1971
)
Mechanisms of morphogenesis: the embryonic neural tube. Int.
J. Neurosci
2
,
183
197
Smith
J. L.
,
Schoenwolf
G. C.
(
1997
)
Neurulation: coming to closure.
Trends Neurosci
20
,
510
517
Smith
J. L.
,
Schoenwolf
G. C.
,
Quan
J.
(
1994
)
Quantitative analyses of neuroepithelial cell shapes during bending of the mouse neural plate.
J. Comp. Neurol
342
,
144
151
Turner
D. L.
,
Weintraub
H.
(
1994
)
Expression of achaete-scute homolog 3 in Xenopus embryos converts ectodermal cells to a neural fate.
Genes Dev
8
,
1434
1447
Van Straaten
H. W.
,
Janssen
H. C.
,
Peeters
M. C.
,
Copp
A. J.
,
Hekking
J. W.
(
1996
)
Neural tube closure in the chick embryo is multiphasic.
Dev. Dyn
207
,
309
318
Zimmerman
K.
,
Shih
J.
,
Bars
J.
,
Collazo
A.
,
Anderson
D. J.
(
1993
)
XASH-3, a novel Xenopus achaete-scute homolog, provides an early marker of planar neural induction and position along the mediolateral axis of the neural plate.
Development
119
,
221
232
This content is only available via PDF.

Supplementary information