The maternal T-box gene VegT, whose transcripts are restricted to the vegetal hemisphere of the Xenopus embryo, plays an essential role in early development. Depletion of maternal VegT transcripts causes embryos to develop with no endoderm, while vegetal blastomeres lose the ability to induce mesoderm (Zhang, J., Houston, D. W., King, M. L., Payne, C., Wylie, C. and Heasman, J. (1998) Cell 94, 515–524). The targets of VegT, a transcription activator, must therefore include genes involved both in the specification of endoderm and in the production of mesoderm-inducing signals. We recently reported that the upstream regulatory region of the homeobox-containing gene Bix4 contains T-box binding sites. Here we show that expression of Bix4 requires maternal VegT and that two T-box binding sites are necessary and sufficient for mesodermal and endodermal expression of reporter genes driven by the Bix4 promoter in transgenic Xenopus embryos. Remarkably, a single T-box binding site is able to act as a mesoderm-specific enhancer when placed upstream of a minimal promoter. Finally, we show that Bix4 rescues the formation of endodermal markers in embryos in which VegT transcripts have been ablated but does not restore the ability of vegetal pole blastomeres to induce mesoderm. These results demonstrate that Bix4 acts directly downstream of VegT to specify endodermal differentiation in Xenopus embryos.

Reference

Reference
Carreira
S.
,
Dexter
T. J.
,
Yavuzer
U.
,
Easty
D. J.
,
Goding
C. R.
(
1998
)
Brachyury-related transcription factor Tbx2 and repression of the melanocyte-specific TRP-1 promoter.
Mol. Cell. Biol
18
,
5099
5108
Casey
E. S.
,
O'Reilly
M. A.
,
Conlon
F. L.
,
Smith
J. C.
(
1998
)
The T-box transcription factor Brachyury regulates expression of eFGF through binding to a non-palindromic response element.
Development
125
,
3887
3894
Dale
L.
,
Matthews
G.
,
Colman
A.
(
1993
)
Secretion and mesoderm-inducing activity of the TGF-beta related domain of Xenopus Vg1.
EMBO J
12
,
4471
4480
Ecochard
V.
,
Cayrol
C.
,
Rey
S.
,
Foulquier
F.
,
Caillol
D.
,
Lemaire
P.
,
Duprat
A. M.
(
1998
)
A novel Xenopus Mix -like gene milk involved in the control of the endomesodermal fates.
Development
125
,
2577
2585
Gawantka
V.
,
Delius
H.
,
Hirschfeld
K.
,
Blumenstock
C.
,
Niehrs
C.
(
1995
)
Antagonizing the Spemann organizer: role of the homeobox gene Xvent-1.
EMBO J
14
,
6268
6279
Harland
R.
,
Gerhart
J.
(
1997
)
Formation and function of Spemann's organizer.
Ann. Rev. Cell Dev. Biol
13
,
611
667
Henry
G. L.
,
Melton
D. A.
(
1998
)
Mixer, a homeobox gene required for endoderm development.
Science
281
,
91
96
Higashi
Y.
,
Moribe
H.
,
Takagi
T.
,
Sekido
R.
,
Kawakami
K.
,
Kikutani
H.
,
Kondoh
H.
(
1997
)
Impairment of T cell development in deltaEF1 mutant mice.
J. Exp. Med
185
,
1467
1479
Horb
M. E.
,
Thomsen
G. H.
(
1997
)
A vegetally-localized T-box transcription factor in Xenopus eggs specifies mesoderm and endoderm and is essential for embryonic mesoderm formation.
Development
124
,
1689
1698
Hudson
C.
,
Clements
D.
,
Friday
R. V.
,
Stott
D.
,
Woodland
H. R.
(
1997
)
Xsox17and- mediate endoderm formation in Xenopus.
Cell
91
,
397
405
Isaacs
H. V.
,
Tannahill
D.
,
Slack
J. M. W.
(
1992
)
Expression of a novel FGF in the Xenopus embryo. A new candidate inducing factor for mesoderm formation and anteroposterior specification.
Development
114
,
711
720
Jones
C. M.
,
Kuehn
M. R.
,
Hogan
B. L. M.
,
Smith
J. C.
,
Wright
C. V. E.
(
1995
)
Nodal-related signals induce axial mesoderm and dorsalize mesoderm during gastrulation.
Development
121
,
3651
3662
Joseph
E. M.
,
Melton
D. A.
(
1997
)
Xnr4: a Xenopus nodal-related gene expressed in the Spemann organizer.
Dev. Biol
184
,
367
372
Kimelman
D.
,
Griffin
K. J.
(
1998
)
Mesoderm induction: a postmodern view.
Cell
94
,
419
421
Kroll
K. L.
,
Amaya
E.
(
1996
)
Transgenic Xenopus embryos from sperm nuclear transplantations reveal FGF signalling requirements during gastrulation.
Development
122
,
3173
3183
Lai
Z. C.
,
Rushton
E.
,
Bate
M.
,
Rubin
G. M.
(
1993
)
Loss of function of the Drosophila zfh-1 gene results in abnormal development of mesodermally derived tissues.
Proc. Natl. Acad. Sci. USA
90
,
4122
4126
Latinkic
B. V.
,
Smith
J. C.
(
1999
).
Goosecoid and Mix.1 repress Brachyury expression and are required for head formation in Xenopus.
Development
126
,
1769
1779
Lustig
K. D.
,
Kroll
K. L.
,
Sun
E. E.
,
Kirschner
M. W.
(
1996
)
Expression cloning of a Xenopus T-related gene (Xombi) involved in mesodermal patterning and blastopore lip formation.
Development
122
,
4001
4012
Mohun
T. J.
,
Brennan
S.
,
Dathan
N.
,
Fairman
S.
,
Gurdon
J. B.
(
1984
)
Cell type-specific activation of actin genes in the early amphibian embryo.
Nature
311
,
716
721
Papaioannou
V. E.
(
1997
)
T-box family reunion.
Trends Genet
13
,
212
213
Rebagliati
M. R.
,
Weeks
D. L.
,
Harvey
R. P.
,
Melton
D. A.
(
1985
)
Identification and cloning of localized maternal RNAs from Xenopus eggs.
Cell
42
,
769
777
Rosa
F. M.
(
1989
).
Mix.1, a homeobox mRNA inducible by mesoderm inducers, is expressed mostly in the presumptive endodermal cells of Xenopus embryos.
Cell
57
,
965
974
Ryan
K.
,
Garrett
N.
,
Mitchell
A.
,
Gurdon
J. B.
(
1996
)
Eomesodermin, a key early gene in Xenopus mesoderm differentiation.
Cell
87
,
989
1000
Sasai
Y.
,
Lu
B.
,
Piccolo
S.
,
De Robertis
E. M.
(
1996
)
Endoderm induction by the organizer-secreted factors chordin and noggin in Xenopus animal caps.
EMBO J
15
,
4547
4555
Shi
Y. B.
,
Hayes
W. P.
(
1994
)
Thyroid hormone-dependent regulation of the intestinal fatty acid-binding protein gene during amphibian metamorphosis.
Dev. Biol
161
,
48
58
Smith
J.
(
1999
)
T-box genes: what they do and how they do it.
Trends Genet
15
,
154
158
Smith
J. C.
,
Price
B. M. J.
,
Green
J. B. A.
,
Weigel
D.
,
Herrmann
B. G.
(
1991
)
Expression of a Xenopus homolog of Brachyury (T) is an immediate-early response to mesoderm induction.
Cell
67
,
79
87
Smith
W. C.
,
McKendry
R.
,
Ribisi
S. J.
,
Harland
R. M.
(
1995
)
A nodal -related gene defines a physical and functional domain within the Spemann organizer.
Cell
82
,
37
46
Stennard
F.
(
1998
)
Xenopus differentiation: VegT gets specific.
Curr. Biol
8
,
928
–.
Stennard
F.
,
Carnac
G.
,
Gurdon
J. B.
(
1996
)
The Xenopus T-box gene, Antipodean, encodes a vegetally localised maternal mRNA and can trigger mesoderm formation.
Development
122
,
4179
4188
Sun
B. I.
,
Bush
S. M.
,
Collins-Racie
L. A.
,
LaVallie
E. R.
,
DiBlasio-Smith
E. A.
,
Wolfman
N. M.
,
McCoy
J. M.
,
Sive
H. L.
(
1999
)
derriere: a TGF-family member required for posterior development in Xenopus.
Development
126
,
1467
1482
Symes
K.
,
Smith
J. C.
(
1987
)
Gastrulation movements provide an early marker of mesoderm induction in Xenopus.
Development
101
,
339
349
Tada
M.
,
Casey
E.
,
Fairclough
L.
,
Smith
J. C.
(
1998
)
Bix1, a direct target of Xenopus T-box genes, causes formation of ventral mesoderm and endoderm.
Development
125
,
3997
4006
Tada
M.
,
O'Reilly
M.-A. J.
,
Smith
J. C.
(
1997
)
Analysis of competence and of Brachyury autoinduction by use of hormone-inducible Xbra.
Development
124
,
2225
2234
Takagi
T.
,
Moribe
H.
,
Kondoh
H.
,
Higashi
Y.
(
1998
)
DeltaEF1, a zinc finger and homeodomain transcription factor, is required for skeleton patterning in multiple lineages.
Development
125
,
21
31
Thomsen
G. H.
,
Melton
D. A.
(
1993
)
Processed Vg1 protein is an axial mesoderm inducer in Xenopus.
Cell
74
,
433
441
Verschueren
K.
,
Remacle
J. E.
,
Kraft
H.
,
Collart
C.
,
Baker
B. S.
,
Tylzanowski
P.
,
Nelles
L.
,
Su
M.-T.
,
Bodmer
R.
,
Smith
J. C.
,
Huylebroeck
D.
(
1999
)
SIP1, a novel zinc finger/homeodomain protein, interacts with Smad proteins and binds to 5-CACCT sequences in several target genes.
J. Biol. Chem
274
,
20489
20498
Vize
P. D.
(
1996
).
DNA sequences mediating the transcriptional response of the Mix.2 homeobox gene to mesoderm induction.
Dev. Biol
177
,
226
231
Walmsley
M. E.
,
Guille
M. J.
,
Bertwistle
D.
,
Smith
J. C.
,
Pizzey
J. A.
,
Patient
R. K.
(
1994
)
Negative control of Xenopus GATA-2 by activin and noggin with eventual expression in precursors of the ventral blood islands.
Development
120
,
2519
2529
Weeks
D. L.
,
Melton
D. A.
(
1987
)
A maternal mRNA localized to the vegetal hemisphere in Xenopus eggs codes for a growth factor related to TGF-beta.
Cell
51
,
861
867
Zernicka-Goetz
M.
,
Pines
J.
,
McLean Hunter
S.
,
Dixon
J. P.
,
Siemering
K. R.
,
Haseloff
J.
,
Evans
M. J.
(
1997
)
Following cell fate in the living mouse embryo.
Development
124
,
1133
1137
Zhang
J.
,
Houston
D. W.
,
King
M. L.
,
Payne
C.
,
Wylie
C.
,
Heasman
J.
(
1998
)
The role of maternal VegT in establishing the primary germ layers in Xenopus embryos.
Cell
94
,
515
524
Zhang
J.
,
King
M. L.
(
1996
)
Xenopus VegT RNA is localized to the vegetal cortex during oogenesis and encodes a novel T-box transcription factor involved in mesodermal patterning.
Development
122
,
4119
4129
This content is only available via PDF.