A main achievement of gastrulation is the movement of the endoderm and mesoderm from the surface of the embryo to the interior. Despite its fundamental importance, this internalization process is not well understood in amphibians. We show that in Xenopus, an active distortion of the vegetal cell mass, vegetal rotation, leads to a dramatic expansion of the blastocoel floor and a concomitant turning around of the marginal zone which constitutes the first and major step of mesoderm involution. This vigorous inward surging of the vegetal region into the blastocoel can be analyzed in explanted slices of the gastrula, and is apparently driven by cell rearrangement. Thus, the prospective endoderm, previously thought to be moved passively, provides the main driving force for the internalization of the mesendoderm during the first half of gastrulation. For further involution, and for normal positioning of the involuted mesoderm and its rapid advance toward the animal pole, fibronectin-independent interaction with the blastocoel roof is required.

Artinger
M.
,
Blitz
I.
,
Inoue
K.
,
Tran
U.
,
Cho
K. W. Y.
(
1997
)
Interaction of goosecoid and brachyury in Xenopus mesoderm patterning.
Mech. Dev
65
,
187
196
Bouwmeester
T.
,
Kim
S.-H.
,
Sasai
Y.
,
Lu
B.
,
De Robertis
E. M.
(
1996
)
Cerberus is a head-inducing secreted factor expressed in the anterior endoderm of Spemann's organizer.
Nature
382
,
595
601
Keller
R. E.
(
1975
)
Vital dye mapping of the gastrula and neurula of Xenopus laevis. I. Prospective areas and morphogenetic movements of the superficial layer.
Dev. Biol
42
,
222
241
Keller
R. E.
(
1976
)
Vital dye mapping of the gastrula and neurula of Xenopus laevis. II. Prospective areas and morphogenetic movements of the deep layer.
Dev. Biol
51
,
118
137
Keller
R. E.
(
1978
)
Time-lapse cinemicrographic analysis of superficial cell behavior during and prior to gastrulation in Xenopus laevis.
J. Morph
157
,
223
248
Keller
R. E.
(
1981
)
An experimental analysis of the role of bottle cells and the deep marginal zone in gastrulation of Xenopus laevis.
J. Exp. Zool
216
,
81
101
Kubota
H. Y.
(
1981
)
Creeping locomotion of the endodermal cells dissociated from gastrulae of the Japanese newt, Cynops pyrrhogaster.
Exp. Cell Res
133
,
137
148
Lane
M.C.
,
Keller
R.
(
1997
)
Microtubule disruption reveals that Spemann's organizer is subdivided into two domains by the vegetal alignment zone.
Development
124
,
895
906
Nieuwkoop
P. D.
,
Florschutz
P. A.
(
1950
)
Quelques caracteres speciaux de la gastrulation et de la neurulation de l'oeuf de Xenopus laevis, Daud. et de quelques autres anoures. 1ere partie. Étude descriptive.
Arch. Biol
61
,
113
150
Poznanski
A.
,
Keller
R.
(
1997
)
The role of planar and early vertical signaling in patterning the expression of Hoxb-1 in Xenopus.
Dev. Biol
184
,
351
366
Ryan
K.
,
Garrett
N.
,
Mitchell
A.
,
Gurdon
J. B.
(
1996
)
Eomesodermin, a key early gene in Xenopus mesoderm differentiation.
Cell
87
,
989
1000
Tracey
W. D.
Jr
,
Pepling
M. E.
,
Horb
M. E.
,
Thomsen
G. H.
,
Gergen
J. P.
(
1998
)
A Xenopus homologue of aml-1 reveals unexpected patterning mechanisms leading to the formation of embryonic blood.
Development
125
,
1371
1380
Vodicka
M. A.
,
Gerhart
J. C.
(
1995
)
Blastomere derivation and domains of gene expression in the Spemann organizer of X enopus laevis.
Development
121
,
3505
3518
Wacker
S.
,
Brodbeck
A.
,
Lemaire
P.
,
Niehrs
C.
,
Winklbauer
R.
(
1998
)
Patterns and control of cell motility in the Xenopus gastrula.
Development
125
,
1931
1942
Wilson
P.
,
Keller
R.
(
1991
)
Cell rearrangement during gastrulation of Xenopus: direct observation of cultured explants.
Development
112
,
289
300
Winklbauer
R.
(
1990
)
Mesodermal cell migration during Xenopus gastrulation.
Dev. Biol
142
,
155
168
Winklbauer
R.
,
Nagel
M.
(
1991
)
Directional mesodermal cell migration in the Xenopus gastrula.
Dev. Biol
148
,
573
589
Winklbauer
R.
,
Keller
R.
(
1996
)
Fibronectin, mesoderm migration, and gastrulation in Xenopus.
Dev. Biol
177
,
413
426
This content is only available via PDF.