Several homeobox genes are expressed in the sea urchin embryo but their roles in development have yet to be elucidated. Of particular interest are homologues of homeobox genes that in mouse and Drosophila are involved in patterning the developing central nervous system (CNS). Here, we report the cloning of an orthopedia (Otp)-related gene from Paracentrotus lividus, PlOtp. Otp is a single copy zygotic gene that presents a unique and highly restricted expression pattern. Transcripts were first detected at the mid-gastrula stage in two pairs of oral ectoderm cells located in a ventrolateral position, overlying primary mesenchyme cell (PMC) clusters. Increases in both transcript abundance and the number of Otp-expressing cells were observed at prism and pluteus stages. Otp transcripts are symmetrically distributed in a few ectodermal cells of the oral field. Labelled cells were observed close to sites of active skeletal rod growth (tips of the budding oral and anal arms), and at the juxtaposition of stomodeum and foregut. Chemicals known to perturb PMC patterning along animal-vegetal and oral-aboral axes altered the pattern of Otp expression. Vegetalization by LiCl caused a shift in Otp-expressing cells toward the animal pole, adjacent to shifted PMC aggregates. Nickel treatment induced expression of the Otp gene in an increased number of ectodermal cells, which adopted a radialized pattern. Finally, ectopic expression of Otp mRNA affected patterning along the oral-aboral axis and caused skeletal abnormalities that resembled those exhibited by nickel-treated embryos. From these results, we conclude that the Otp homeodomain gene is involved in short-range cell signalling within the oral ectoderm for patterning the endoskeleton of the larva through epithelial-mesenchymal interactions.

REFERENCES

Angerer
L. M.
,
Dolecky
G. J.
,
Gagnon
M.
,
Lum
R.
,
Wang
G.
,
Yang
Q.
,
Humphreys
T.
,
Angerer
R. C.
(
1989
).
Progressively restricted expression of a homeobox gene within the aboral ectoderm of developing sea urchin embryo.
Genes Dev.
3
,
370
383
Armstrong
N.
,
Hardin
J.
,
McClay
D. R.
(
1993
).
Cell-cell interactions regulate skeleton formation in the sea urchin embryo.
Development
119
,
883
840
Armstrong
N.
,
McClay
D. R.
(
1994
).
Skeletal pattern is specified autonomously by th primary mesenchyme cells in sea urchin embryo.
Dev. Biol.
162
,
329
338
Bellomonte
D.
,
Di Bernardo
M.
,
Russo
R.
,
Caronia
G.
,
Spinelli
G.
(
1998
).
Highly restricted expression at the ectoderm – endoderm boundary of PlHbox 9, a sea urchin homeobox gene related to the human HB9 gene.
Mech. Dev.
74
,
185
188
Cameron
R. A.
,
Fraser
S. E.
,
Britten
R. J.
,
Davidson
E. H.
(
1989
).
The oral-aboral axis of a sea urchin embryo is specified by first cleavage.
Development
106
,
641
647
.
Cameron
R. A.
,
Smith
L. C.
,
Britten
R. J.
,
Davidson
E. H.
(
1994
).
Ligand-dependent stimulation of introduced mammalian brain receptors alters spicule symmetry and other morphogenetic events in sea urchin embryos.
Mech. Dev.
45
,
31
47
Chomczynski
P.
,
Sacchi
N.
(
1987
).
Single-step method of RNA isolation by guanidinium thiocyanate-phenol-chloroform extraction.
Anal. Biochem.
162
,
156
159
Coffman
J. A.
,
McClay
D. R.
(
1990
).
A hyaline layer protein that becomeslocalised to the oral ectoderm and foregut of sea urchin embryos.
Dev. Biol.
140
,
93
104
Cox
K. H.
,
Angerer
L. M.
,
Lee
J. J.
,
Davidson
E. H.
,
Angerer
R. C.
(
1986
).
Cell lineage-specific programs of expression of multiple actin genes during sea urchin embryogenesis.
J. Mol. Biol.
188
,
159
172
Di Bernardo
M.
,
Russo
R.
,
Oliveri
P.
,
Melfi
R.
,
Spinelli
G.
(
1994
).
Expression of homeobox containing genes in the sea urchin (Paracentrotus lividus) embryo.
Genetica
94
,
141
150
Di Bernardo
M.
,
Russo
R.
,
Oliveri
P.
,
Melfi
R.
,
Spinelli
G.
(
1995
).
Homeobox-containing gene transiently expressed in a spatially restricted pattern in the early sea urchin embryo.
Proc. Natl. Acad. Sci. USA
92
,
8180
8184
Dobias
L. S.
,
Ma
L.
,
Wu
H.
,
Bell
J. R.
,
Maxon
R.
(
1997
).
The evolution of Msx gene function: expression and regulation of a sea urchin Msx class homeobox gene.
Mech. Dev.
61
,
37
48
Dolecki
G. J.
,
Wang
G.
,
Humphreys
T.
(
1988
).
Stage and tissue-specific expression of two homeobox genes in sea urchin embryos and adults.
Nucleic Acids Res.
16
,
11543
11558
Emily-Fenouil
F.
,
Ghiglione
C.
,
Lhomond
G.
,
Lepage
T.
,
Gache
C.
(
1998
).
GSK3beta/shaggy mediates patterning along the animal-vegetal axis of the sea urchin embryo.
Development
125
,
2489
2498
Ettensohn
C. A.
,
Guss
K. A.
,
Hodor
P. G.
,
Malinda
K. M.
(
1997
).
The morphogenesis of the skeletal system of the sea urchin embryo.
In
Reproductive Biology of Invertebrates
, Vol.
VII
(ed.
Collier
J. R.
), pp.
225
265
.
Oxford and IBH Publishing Co. Pvt. Ltd.
New Delhi, Calcutta
.
Ettensohn
C. A.
,
Malinda
K. M.
(
1993
).
Size regulation and morphogenesis: a cellular analysis of skeletogenesis in the sea urchin embryo.
Development
119
,
155
167
Ettensohn
C. A.
,
McClay
(
1986
).
The regulation of primary mesenchyme cell migration in the sea urchin embryo: Transplantation of cells and latex beads.
Dev. Biol.
117
,
380
391
Frohman
M. A.
,
Dush
M. K.
,
Martin
G. R.
(
1988
).
Rapid production of full-length cDNAs from rare transcripts: amplification using a single gene-specific oligonucleotide primer.
Proc. Natl. Acad. Sci. USA
85
,
8998
9002
Gan
L.
,
Mao
C. A.
,
Wikramanayake
A.
,
Angerer
L. M.
,
Angerer
R. C.
,
Klein
W.
(
1995
).
An orthodenticle-related protein from
Strongylocentrotus purpuratus. Dev. Biol.
167
,
517
528
George
N. C.
,
Killian
C. E.
,
Wilt
F.
(
1991
).
Characterization and expression of a gene encoding a 30.6-kDa Strongylocentrotus purpuratus spicule matrix protein.
Dev. Biol.
147
,
334
342
Ghiglione
C.
,
Lhomond
G.
,
Lepage
T.
,
Gache
C.
(
1993
).
Cell-autonomous expression and position-dependent repression by Li+ of two zygotic genes during sea urchin early development.
EMBO J.
12
,
87
96
Giudice
G.
(
1973
).
Developmental Biology of The Sea Urchin Embryo
, pp.
3
9
,
Academic Press
,
New York and London
.
Guss
K. A.
,
Ettensohn
C. A.
(
1997
).
Skeletal morphogenesis in the sea urchin embryo: regulation of primary mesenchyme gene expression and skeletal rod growth by ectoderm-derived cues.
Development
124
,
1899
1908
Gustafson
T.
,
Wolpert
L.
(
1961a
).
Studies on the cellular basis of morphogenesis in the sea urchin embryo: Directed movements of primary mesenchyme cells in normal and vegetalized larvae.
Exp. Cell Res.
24
,
64
79
Gustafson
T.
,
Wolpert
L.
(
1961b
).
Studies on the cellular basis of morphogenesis of the sea urchin embryo. Development of the skeletal pattern.
Exp. Cell Res.
25
,
311
325
Gustafson
T.
,
Wolpert
L.
(
1963
).
The cellular basis of morphogenesis and sea urchin development.
Inter. Rev. Cytol.
15
,
139
214
Hägstrom
B. E.
,
Lönning
S.
(
1967
).
Cytological and morphological studies of the action of lithium on the development of the sea urchin embryo.
Wilhelm Roux's Arch. Entw. Org.
158
,
1
12
Hardin
J.
,
Armstrong
N.
(
1997
).
Short-range cell-cell signals control patterning in the oral region of the sea urchin embryo.
Dev. Biol.
182
,
134
149
Hardin
J.
,
Coffman
J. A.
,
Black
S. D.
,
McClay
D. R.
(
1992
).
Commitment along the dorsoventral axis of the sea urchin embryo is altered inresponse to NiCl2.
Development
116
,
671
685
.
Hörstadius
S.
(
1973
)
Experimental Biology of the Echinoderms.
Oxford University Press
.
Manak
J. R.
,
Scott
M. P.
(
1994
).
A class act: conservation of homeodomain protein functions.
Development
Supplement
,
61
71
.
Mao
C. A.
,
Wikramanayake
A.
,
Gan
L.
,
Chuan
C.
,
Summers
R. G.
,
Klein
W. H.
(
1996
).
Altering cell fates in sea urchin embryos by overexpressing SpOtx, an orthodenticle-related protein.
Development
122
,
1489
1498
Martinez
P.
,
Davidson
E.
(
1997
).
SpHmx, a sea urchin homeobox gene expressed in embryonic pigment cells.
Dev. Biol.
181
,
213
222
McGinnis
W.
,
Krumlauf
R.
(
1992
).
Homeobox genes and axial patterning.
Cell
68
,
283
302
Okazaki
K.
(
1975
).
Normal development to metamorphosis.
In
The Sea Embryo: Biochemistry and Morphogenesis
(ed.
Czihak
G.
), pp.
177
232
.
New York
:
Springer-Verlag
.
Okazaki
K.
,
Fukushi
T.
,
Dan
K.
(
1962
).
Cyto-embryological studies of sea urchin IV. Correlation between the shape of the ectodermal cells and the arrangement of the primary mesenchyme cells in sea urchin larvae.
Acat Embryol. Morphol. Exp.
5
,
17
31
Ramachandran
R. K.
,
Wikramanayake
A. H.
,
Uzman
J. A.
,
Govindarajan
V.
,
Tomlinson
C. R.
(
1997
).
Disruption of gastrulation and oral-aboral ectoderm differentiation in the Lytechinus pictus embryo by a dominant/negative PDGF receptor.
Development
124
,
2355
2364
Ransick
A.
,
Davidson
E. H.
(
1993
).
A complete second gut induced by transplanted micromeres in the sea urchin embryo.
Science
259
,
1134
1138
Reynolds
S. D.
,
Angerer
L. M.
,
Palis
J.
,
Nasir
A.
,
Angerer
R. C.
(
1992
).
Early mRNAs, spatially restricted along the animal vegetal axis of sea urchin embryos, include one encoding a protein related to tolloid and BMP-1.
Development
114
,
769
786
Simeone
A.
,
D'Apice
M. R.
,
Nigro
V.
,
Casanova
J.
,
Graziani
F.
,
Acampora
D.
,
Avvantagiato
V.
(
1994
).
Orthopedia, a novel homeobox-containing gene expressed in the developing CNS of both mouse and Drosophila.
Neuron
13
,
83
101
Tan
H.
,
Ransick
A.
,
Wu
H.
,
Dobias
S.
,
Liu
Y. H.
,
Maxson
R.
(
1998
).
Disruption of primary mesenchyme cell patterning by misregulated ectodermal expression of SpMsx in sea urchin embryos.
Dev. Biol.
201
,
230
246
Tomlinson
C. R.
,
Klein
W. H.
(
1990
).
Temporal and spatial transcriptional regulation of the aboral ectoderm-specific Spec genes during sea urchin embryogenesis.
Mol. Reprod. Dev.
25
,
328
338
Turner
D. L.
,
Weintraub
H.
(
1994
).
Expression of achaete-scute homolog 3 in Xenopus embryos converts ectodermal cells to a neural fate.
Genes Dev.
8
,
1434
1447
von Ubisch
L.
(
1937
).
Di Normale Skelettbildung bei Echinocyamus pusillus und Psamechinus miliaris und die Bedeutung dieser Vorgänge für die Analyse der Skelette von Keimblatt-Chimären.
Z. Wiss. Zool.
149
,
402
476
Wilt
F. H.
(
1997
).
Looking into the sea urchin embryo you can see local cell interactions regulate morphogenesis.
BioEssays
19
,
665
668
Zito
F.
,
Tesoro
V.
,
McClay
D. R.
,
Nakano
E.
,
Matranga
V.
(
1998
).
Ectoderm Cell-ECM Interaction is essential for sea urchin embryo skeletogenesis.
Dev. Biol.
196
,
184
192
This content is only available via PDF.