During inversion of a Volvox embryo, a series of cell shape changes causes the multicellular sheet to bend outward, and propagation of the bend from the anterior to the posterior pole eventually results in an inside-out spherical sheet of cells. We use fluorescent and electron microscopy to study the behavior of the cytoskeleton in cells undergoing shape changes. Microtubules are aligned parallel to the cell's long axis and become elongated in the bend. Myosin and actin filaments are arrayed perinuclearly before inversion. In inversion, actin and myosin are located in a subnuclear position throughout the uninverted region but this localization is gradually lost towards the bend. Actomyosin inhibitors cause enlargement of the embryo. The bend propagation is inhibited halfway and, as a consequence, the posterior hemisphere remains uninverted. The arrested posterior hemisphere will resume and complete inversion even in the presence of an actomyosin inhibitor if the anterior hemisphere is removed microsurgically. We conclude that the principal role of actomyosin in inversion is to cause a compaction of the posterior hemisphere; unless the equatorial diameter of the embryo is reduced in this manner, it is too large to pass through the opening defined by the already-inverted anterior hemisphere.

Reference

Cramer
L. P.
,
Mitchison
T. J.
(
1995
)
Myosin is involved in postmitotic cell spreading.
J. Cell Biol
131
,
179
89
Ettensohn
C. A.
(
1985
)
Mechanisms of epithelial invagination.
Q. Rev. Biol
60
,
289
307
Fristrom
D.
(
1988
)
The cellular basis of epithelial morphogenesis.
A review. Tissue Cell
20
,
645
90
Green
K. J.
,
Viamontes
G. I.
,
Kirk
D. L.
(
1981
)
Mechanism of formation, ultrastructure, and function of the cytoplasmic bridge system during morphogenesis in Volvox.
J. Cell Biol
91
,
756
69
Hallmann
A.
,
Rappel
A.
,
Sumper
M.
(
1997
)
Gene replacement by homologous recombination in the multicellular green alga Volvox carteri.
Proc. Natl Acad. Sci. USA
94
,
7469
74
Kirk
D. L.
,
Kirk
M. M.
(
1983
)
Protein synthetic patterns during the asexual life cycle of Volvox carteri.
Dev. Biol
96
,
493
506
Kirk
M. M.
,
Ransick
A.
,
McRae
S. E.
,
Kirk
D. L.
(
1993
)
The relationship between cell size and cell fate in Volvox carteri.
J. Cell Biol
123
,
191
208
Miller
S. M.
,
Schmitt
R.
,
Kirk
D. L.
(
1993
)
Jordan, an active transposable element similar to higher plant transposons.
Plant Cell
5
,
1125
1138
Odell
G. M.
,
Oster
G.
,
Alberch
P.
,
Burnside
B.
(
1981
)
The mechanical basis of morphogenesis. I. Epithelial folding and invagination.
Dev. Biol
85
,
446
62
Ogihara
S.
,
Ikebe
M.
,
Takahashi
K.
,
Tonomura
Y.
(
1983
)
Requirement of phosphorylation of Physarum myosin heavy chain for thick filament formation, actin activation of Mg2+-ATPase activity and Ca2+inhibitory super precipitation.
J. Biochem
93
,
205
223
Owaribe
K.
,
Masuda
H.
(
1982
)
Isolation and characterization of circumferential microfilament bundles from retinal pigmented epithelial cells.
J. Cell Biol
95
,
310
5
Ransick
A.
(
1991
)
Reproductive cell specification during Volvox obversus development.
Dev. Biol
143
,
185
98
Redmond
T.
,
Zigmond
S. H.
(
1993
)
Distribution of F-actin elongation sites in lysed polymorphonuclear leukocytes parallels the distribution of endogenous F-actin.
Cell Motil. Cytoskeleton
26
,
7
18
Schiedlmeier
B.
,
Schmitt
R.
,
Muller
W.
,
Kirk
M. M.
,
Gruber
H.
,
Mages
W.
,
Kirk
D. L.
(
1994
)
Nuclear transformation of Volvox carteri.
Proc. Natl Acad. Sci. USA
91
,
5080
4
Sessoms
A. H.
,
Huskey
R. J.
(
1973
)
Genetic control of development in Volvox: isolation and characterization of morphogenetic mutants.
Proc. Natl Acad Sci. USA
70
,
1335
8
Tam
L. W.
,
Kirk
D. L.
(
1991
)
Identification of cell-type-specific genes of Volvox carteri and characterization of their expression during the asexual life cycle.
Dev. Biol
145
,
51
66
Viamontes
G. I.
,
Fochtmann
L. J.
,
Kirk
D. L.
(
1979
)
Morphogenesis in Volvox: analysis of critical variables.
Cell
17
,
537
50
Viamontes
G. I.
,
Kirk
D. L.
(
1977
)
Cell shape changes and the mechanism of inversion in Volvox.
J. Cell Biol
75
,
719
30
This content is only available via PDF.