The APETALA3 floral homeotic gene is required for petal and stamen development in Arabidopsis. APETALA3 transcripts are first detected in a meristematic region that will give rise to the petal and stamen primordia, and expression is maintained in this region during subsequent development of these organs. To dissect how the APETALA3 gene is expressed in this spatially and temporally restricted domain, various APETALA3 promoter fragments were fused to the uidA reporter gene encoding beta-glucuronidase and assayed for the resulting patterns of expression in transgenic Arabidopsis plants. Based on these promoter analyses, we defined cis-acting elements required for distinct phases of APETALA3 expression, as well as for petal-specific and stamen-specific expression. By crossing the petal-specific construct into different mutant backgrounds, we have shown that several floral genes, including APETALA3, PISTILLATA, UNUSUAL FLORAL ORGANS, and APETALA1, encode trans-acting factors required for second-whorl-specific APETALA3 expression. We have also shown that the products of the APETALA1, APETALA3, PISTILLATA and AGAMOUS genes bind to several conserved sequence motifs within the APETALA3 promoter. We present a model whereby spatially and temporally restricted APETALA3 transcription is controlled via interactions between proteins binding to different domains of the APETALA3 promoter.

REFERENCES

Bai
C.
,
Sen
P.
,
Hofmann
P.
,
Ma
L.
,
Goebl
M.
,
Harper
J. W.
,
Elledge
S. J.
(
1996
)
SKP1 connects cell cycle regulators to the ubiquitin proteolysis machinery through a novel motif, the F-box.
Cell
86
,
263
274
Bechtold
N.
,
Ellis
J.
,
Pelletier
G.
(
1993
)
In planta Agrobacterium mediated gene transfer by infiltration of adult Arabidopsis plants.
C. R. Acad. Sci. Ser. III Sci. Vie
316
,
1194
1199
Black
B. L.
,
Ligon
K. L.
,
Zhang
Y.
,
Olson
E. N.
(
1996
)
Cooperative transcriptional activation by the neurogenic basic helix-loop-helix protein MASH1 and members of the myocyte enhancer factor-2 (MEF2) family.
J. Biol. Chem
271
,
26659
26663
Bowman
J. L.
,
Alvarez
J.
,
Weigel
D.
,
Meyerowitz
E. M.
,
Smyth
D. R.
(
1993
)
Control of flower development in Arabidopsis thaliana by APETALA1 and interacting genes.
Development
119
,
721
743
Bowman
J. L.
,
Sakai
H.
,
Jack
T.
,
Weigel
D.
,
Mayer
U.
,
Meyerowitz
E. M.
(
1992
)
SUPERMAN, a regulator of floral homeotic genes in Arabidopsis.
Development
114
,
599
615
Crone
W.
,
Lord
E. M.
(
1994
)
Floral organ initiation and development in wild-type Arabidopsis thaliana (Brassicaceae) and in the organ identity mutants apetala2-1 and agamous-1.
Can. J. Bot
72
,
384
401
Day
C. D.
,
Galgoci
B. F.
,
Irish
V. F.
(
1995
)
Genetic ablation of petal and stamen primordia to elucidate cell interactions during floral development.
Development
121
,
2887
2895
Fischer
K.
,
Arbinger
B.
,
Kammerer
B.
,
Busch
C.
,
Brink
S.
,
Wallmeier
H.
,
Sauer
N.
,
Eckerskorn
C.
,
Flugge
U.-I.
(
1994
)
Cloning and in vivo expression of functional triose phosphate/phosphate translocators from C3 and C4 plants: evidence for the putative participation of specific amino acid residues in the recognition of phosphoenolpyruvate.
Plant J
5
,
215
226
Goodrich
J.
,
Puangsomlee
P.
,
Martin
M.
,
Long
D.
,
Meyerowitz
E. M.
,
Coupland
G.
(
1997
)
A Polycomb-group gene regulates homeotic gene expression in Arabidopsis.
Nature
386
,
44
51
Goto
K.
,
Meyerowitz
E. M.
(
1994
)
Function and regulation of the Arabidopsis floral homeotic gene PISTILLATA.
Genes Dev
8
,
1548
1560
Hill
J. P.
,
Lord
E. M.
(
1989
)
Floral development in Arabidopsis thaliana: a comparison of the wild type and the homeotic pistillata mutant.
Can. J. Bot
67
,
2922
2936
Huang
H.
,
Mizukami
Y.
,
Ma
H.
(
1993
)
Isolation and characterization of the binding sequence for the product of the Arabidopsis floral homeotic gene AGAMOUS.
Nucl. Acids Res
21
,
4769
4776
Huang
H.
,
Tudor
M.
,
Weiss
C. A.
,
Hu
Y.
,
Ma
H.
(
1995
)
The Arabidopsis MADS-box gene AGL3 is widely expressed and encodes a sequence specific DNA-binding domain.
Plant Mol. Biol
28
,
549
567
Ingram
G. C.
,
Doyle
S.
,
Carpenter
R.
,
Schultz
E. A.
,
Simon
R.
,
Coen
E. S.
(
1997
)
Dual role for fimbriata in regulating floral homeotic genes and cell division in Antirrhinum.
EMBO J
16
,
6521
6534
Ingram
G. C.
,
Goodrich
J.
,
Wilkinson
M. D.
,
Simon
R.
,
Haughn
G. W.
,
Coen
E. S.
(
1995
)
Parallels between UNUSUAL FLORAL ORGANS and FIMBRIATA, genes controlling flower development in Arabidopsis and Antirrhinum.
Plant Cell
7
,
1501
1510
Irish
V. F.
,
Yamamoto
Y. T.
(
1995
)
Conservation of floral homeotic gene function between Arabidopsis and Antirrhinum.
Plant Cell
7
,
1635
1644
Jack
T.
,
Brockman
L. L.
,
Meyerowitz
E. M.
(
1992
)
The homeotic gene APETALA3 of Arabidopsis thaliana encodes a MADS box and is expressed in petals and stamens.
Cell
68
,
683
697
Jack
T.
,
Fox
G. L.
,
Meyerowitz
E. M.
(
1994
)
Arabidopsis homeotic gene APETALA3 ectopic expression: transcriptional and posttranscriptional regulation determine floral organ identity.
Cell
76
,
703
716
Jefferson
R. A.
,
Kavanagh
T. A.
,
Bevan
M. W.
(
1987
)
GUS fusions: B-glucuronidase as a sensitive and versatile gene fusion marker.
EMBO J
6
,
3901
3907
Kempin
S.
,
Savidge
B.
,
Yanofsky
M. F.
(
1995
)
Molecular basis of the cauliflower phenotype in Arabidopsis.
Science
267
,
522
525
Krizek
B. A.
,
Meyerowitz
E. M.
(
1996
)
The Arabidopsis homeotic genes APETALA3 and PISTILLATA are sufficient to provide the B class organ identity function.
Development
122
,
11
22
Lee
I.
,
Wolfe
D. S.
,
Nilsson
O.
,
Weigel
D.
(
1997
)
A LEAFY co-regulator encoded by UNUSUAL FLORAL ORGANS.
Curr. Biol
7
,
95
104
Levin
J. Z.
,
Meyerowitz
E. M.
(
1995
)
UFO: an Arabidopsis gene involved in both floral meristem and floral organ development.
Plant Cell
7
,
529
548
Luo
D.
,
Carpenter
R.
,
Vincent
C.
,
Copsey
L.
,
Coen
E.
(
1996
)
Origin of floral asymmetry in Antirrhinum.
Nature
383
,
794
799
Ma
H.
,
Yanofsky
M. F.
,
Meyerowitz
E. M.
(
1991
)
AGL1-AGL6, an Arabidopsis gene family with similarity to floral homeotic and transcription factor genes.
Genes Dev
5
,
484
495
Mandel
M. A.
,
Gustafson-Brown
C.
,
Savidge
B.
,
Yanofsky
M. F.
(
1992
)
Molecular characterization of the Arabidopsis floral homeotic gene APETALA1.
Nature
360
,
273
277
Mead
J.
,
Zhong
H.
,
Acton
T. B.
,
Vershon
A. K.
(
1996
)
The yeast alpha-2 and Mcm1 proteins interact through a region similar to a motif found in homeodomain proteins of higher eukaryotes.
Mol. Cell. Biol
16
,
2135
2143
Mizukami
Y.
,
Ma
H.
(
1992
)
Ectopic expression of the floral homeotic gene agamous in transgenic arabidopsis plants alters floral organ identity.
Cell
71
,
119
131
Molkentin
J. D.
,
Black
B. L.
,
Martin
J. F.
,
Olson
E. N.
(
1995
)
Cooperative activation of muscle gene expression by MEF2 and myogenic bHLH proteins.
Cell
83
,
1125
1136
Riechmann
J. L.
,
Meyerowitz
E. M.
(
1997
)
Determination of floral organ identity by Arabidopsis MADS domain homeotic proteins AP1, AP3, PI, and AG is independent of their DNA-binding specificity.
Mol. Biol. Cell
8
,
1243
1259
Riechmann
J. L.
,
Wang
M.
,
Meyerowitz
E. M.
(
1996
)
DNA-binding properties of Arabidopsis MADS domain homeotic proteins APETALA1, APETALA3, PISTILLATA and AGAMOUS.
Nucl. Acids Res
24
,
3134
3141
Sakai
H.
,
Medrano
L. J.
,
Meyerowitz
E. M.
(
1995
)
Role of SUPERMAN in maintaining Arabidopsis floral whorl boundaries.
Nature
378
,
199
201
Samach
A.
,
Kohalmi
S. E.
,
Motte
P.
,
Datla
R.
,
Haughn
G. W.
(
1997
)
Divergence of function and regulation of class B floral organ identity genes.
Plant Cell
9
,
559
570
Savidge
B.
,
Rounsley
S. D.
,
Yanofsky
M. F.
(
1995
)
Temporalrelationship between the transcription of two Arabidopsis MADS box genes and the floral organ identity genes.
Plant Cell
7
,
721
733
Schultz
E. A.
,
Pickett
F. B.
,
Haughn
G. W.
(
1991
)
The FLO10 gene product regulates the expression domain of homeotic genes AP3 and PI in Arabidopsis flowers.
Plant Cell
3
,
1221
1237
Schwarz-Sommer
Z.
,
Hue
I.
,
Huijser
P.
,
Flor
P. J.
,
Hansen
R.
,
Tetens
F.
,
Lonnig
W.-E.
,
Saedler
H.
,
Sommer
H.
(
1992
)
Characterization of the Antirrhinum floral homeotic MADS-box gene deficiens: evidence for DNA binding and autoregulation of its persistent expression throughout flower development.
EMBO J
11
,
251
263
Shiraishi
H.
,
Okada
K.
,
Shimura
Y.
(
1993
)
Nucleotide sequences recognized by the AGAMOUS MADS domain of Arabidopsis thaliana in vitro.
Plant J
4
,
385
398
Smyth
D. R.
,
Bowman
J. L.
,
Meyerowitz
E. M.
(
1990
)
Early flower development in Arabidopsis.
Plant Cell
2
,
755
767
Thorsness
M. K.
,
Kandasamy
M. K.
,
Nasrallah
M. E.
,
Nasrallah
J. B.
(
1993
)
Genetic ablation of floral cells in Arabidopsis.
Plant Cell
5
,
253
261
Tilly
J.
,
Allen
D. W.
,
Jack
T.
(
1998
)
The CArG boxes in the promoter of the Arabidopsis floral organ identity gene APETALA3 mediate diverse regulatory effects.
Development
125
,
1647
1657
Valvekens
D.
,
Van Montagu
M.
,
Van Lijsebettens
M.
(
1988
)
Agrobacterium tumefasciens mediated transformation of Arabidopsis root explants by using kanamycin selection.
Proc. Natl. Acad. Sci. USA
85
,
5536
5540
Weigel
D.
,
Alvarez
J.
,
Smyth
D. R.
,
Yanofsky
M. F.
,
Meyerowitz
E. M.
(
1992
)
LEAFY controls floral meristem identity in Arabidopsis.
Cell
69
,
843
859
Weigel
D.
,
Meyerowitz
E. M.
(
1993
)
Activation of floral homeotic genes in Arabidopsis.
Science
261
,
1723
1726
Wilkinson
M. D.
,
Haughn
G. W.
(
1995
)
UNUSUAL FLORAL ORGANS controls meristem identity and organ primordia fate in Arabidopsis.
Plant Cell
7
,
1485
1499
Wynne
J.
,
Treisman
R.
(
1992
)
SRF and MCM1 have related but distinct DNA binding specificities.
Nucl. Acids Res
20
,
3297
3303
Yanofsky
M. F.
,
Ma
H.
,
Bowman
J. L.
,
Drews
G. N.
,
Feldmann
K. A.
,
Meyerowitz
E. M.
(
1990
)
The protein encoded by the Arabidopsis homeotic gene agamous resembles transcription factors.
Nature
346
,
35
39
This content is only available via PDF.