The orientation of cell division is a critical aspect of development. In 2-cell C. elegans embryos, the spindle in the posterior cell is aligned along the long axis of the embryo and contributes to the unequal partitioning of cytoplasm, while the spindle in the anterior cell is oriented transverse to the long axis. Differing spindle alignments arise from blastomere-specific rotations of the nuclear-centrosome complex at prophase. We have found that mutations in the maternally expressed gene let-99 affect spindle orientation in all cells during the first three cleavages. During these divisions, the nuclear-centrosome complex appears unstable in position. In addition, in almost half of the mutant embryos, there are reversals of the normal pattern of spindle orientations at second cleavage: the spindle of the anterior cell is aligned with the long axis of the embryo and nuclear rotation fails in the posterior cell causing the spindle to form transverse to the long axis. In most of the remaining embryos, spindles in both cells are transverse at second cleavage. The distributions of several asymmetrically localized proteins, including P granules and PAR-3, are normal in early let-99 embryos, but are perturbed by the abnormal cell division orientations at second cleavage. The accumulation of actin and actin capping protein, which marks the site involved in nuclear rotation in 2-cell wild-type embryos, is abnormal but is not reversed in let-99 mutant embryos. Based on these data, we conclude that let-99(+) is required for the proper orientation of spindles after the establishment of polarity, and we postulate that let-99(+) plays a role in interactions between the astral microtubules and the cortical cytoskeleton.

REFERENCES

REFERENCES
Bowerman
B.
,
Eaton
B. A.
,
Priess
J. R.
(
1992
)
skn-1, a maternally expressed gene required to specify the fate of ventral blastomeres in the early C. elegans embryo.
Cell
68
,
1061
1075
Brenner
S.
(
1974
)
The genetics of Caenorhabditis elegans.
Genetics
77
,
71
94
Chant
J.
(
1996
)
Septin scaffolds and cleavage planes in Saccharomyces.
Cell
84
,
187
190
Cheng
N. N.
,
Kirby
C.
,
Kemphues
K. J.
(
1995
)
Control of cleavage spindle orientation in C. elegans: The role of the par-2 and par-3 genes.
Genetics
139
,
549
555
Chenn
A.
,
McConnell
S. K.
(
1995
)
Cleavage orientation and the asymmetric inheritance of Notch1 immunoreactivity in mammalian neurogenesis.
Cell
82
,
631
641
Clark
D. V.
,
Rogalski
T. M.
,
Donati
L. M.
,
Baillie
D. L.
(
1988
)
The unc-22 (IV) region of Caenorhabditis elegans: Genetic analysis of lethal mutations.
Genetics
119
,
345
353
Etemad-Moghadam
B.
,
Guo
S.
,
Kemphues
K. J.
(
1995
)
Asymmetrically distributed PAR-3 protein contributes to cell polarity and spindle alignment in early C. elegans embryos.
Cell
83
,
743
752
Goldstein
B.
(
1993
)
Establishment of gut fate in the E lineage of C. elegans: the roles of lineage-dependent mechanisms and cell interactions.
Development
118
,
1267
1277
Guo
S.
,
Kemphues
K. J.
(
1995
)
Par-1, a gene required for establishing polarity in C. elegans embryos, encodes a putative Ser-Thr kinase that is asymmetrically distributed.
Cell
81
,
611
620
Hyman
A. A.
(
1989
)
Centrosome movement in the early divisions of Caenorhabditis elegans: a cortical site determining centrosome position.
J. Cell Biol
109
,
1185
1194
Hyman
A. A.
,
White
J. G.
(
1987
)
Determination of cell division axes in the early embryogenesis of Caenorhabditis elegans.
J. Cell Biol
105
,
2123
2135
Jurgens
G.
(
1995
)
Axis formation in plant embryogenesis: cues and clues.
Cell
81
,
467
470
Kawamura
K.-Y.
,
Yamashiki
N.
(
1992
)
The determination of spindle polarity in early mitotic stages of the dividing grasshopper neuroblasts.
Devel. Growth Diff
34
,
427
435
Kemphues
K. J.
,
Wolf
N.
,
Wood
W. B.
,
Hirsh
D.
(
1986
)
Two loci required for cytoplasmic organization in early embryos of Caenorhabditis elegans.
Dev. Biol
113
,
449
460
Kemphues
K. J.
,
Priess
J. R.
,
Morton
D. G.
,
Cheng
N.
(
1988
)
Identification of genes required for cytoplasmic localization in early embryos of C. elegans.
Cell
52
,
311
320
Kraut
R.
,
Chia
W.
,
Jan
L. Y.
,
Jan
Y. N.
,
Knoblich
J. A.
(
1996
)
Role of inscuteable in orienting asymmetric cell divisions in Drosophila.
Nature
383
,
50
55
Kropf
D. L.
(
1992
)
Establishment and expression of cellular polarity in fucoid zygotes.
Microbiological Reviews
56
,
316
339
Laufer
J. S.
,
Bazzicalupo
P.
,
Wood
W. B.
(
1980
)
Segregation of developmental potential in early embryos of Caenorhabditis elegans.
Cell
19
,
569
577
McGrail
M.
,
Hays
T. S.
(
1997
)
The microtubule motor cytoplasmic dynein is required for spindle orientation during germline cell divisions and oocyte differentiation in Drosophila.
Development
124
,
2409
2419
Mello
C. C.
,
Draper
B. W.
,
Krause
M.
,
Weintraub
H.
,
Priess
J. R.
(
1992
)
The pie-1 and mex-1 genes and maternal control of blastomere identity in early C. elegans embryos.
Cell
70
,
163
176
Mello
C. C.
,
Draper
B. W.
,
Priess
J. R.
(
1994
)
The maternal genes apx-1 and glp-1 and establishment of dorsal-ventral polarity in the early C. elegans embryo.
Cell
77
,
95
106
Palmer
R. E.
,
Sullivan
D. S.
,
Huffaker
T.
,
Koshland
D.
(
1992
)
Role of astral microtubules and actin in spindle orientation and migration in the budding yeast, Saccharomyces cerevisiae.
J. Cell Biol
119
,
583
593
Priess
J. R.
,
Thomson
J. N.
(
1987
)
Cellular interactions in early C. elegans embryos.
Cell
48
,
241
250
Reinsch
S.
,
Karsenti
E.
(
1994
)
Orientation of spindle axis and distribution of plasma membrane proteins during cell division in polarized MDCKII cells.
J. Cell Biol
126
,
1509
1526
Rhyu
M. S.
,
Knoblich
J. A.
(
1995
)
Spindle orientation and asymmetric cell fate.
Cell
82
,
523
526
Salmon
E. D.
(
1989
)
Cytokinesis in animal cells.
Curr. Opin. Cell Biol
1
,
541
547
Schroeder
T. E.
(
1987
)
Fourth cleavage of sea urchin blastomeres: Microtubule patterns and myosin localization in equal and unequal cell divisions.
Dev. Biol
124
,
9
22
Smith
L. G.
,
Hake
S.
,
Sylvester
A. W.
(
1996
)
The tangled-1 mutation alters cell division orientations throughout maize leaf development without altering leaf shape.
Development
122
,
481
489
Snyder
M.
,
Gehrung
S.
,
Page
B. D.
(
1991
)
Studies concerning the temporal and genetic control of cell polarity in Saccharomyces cerevisiae.
J. Cell Biol
114
,
515
532
Strome
S.
,
Wood
W. B.
(
1983
)
Generation of asymmetry and segregation of germ-line granules in early Caenorhabditis elegans embryos.
Cell
35
,
15
25
Strome
S.
,
Martin
P.
,
Schierenberg
E.
,
Paulsen
J.
(
1995
)
Transformation of the germ line into muscle in mes-1 mutant embryos of C. elegans.
Development
121
,
2961
2972
Sulston
J.
,
Schierenberg
E.
,
White
J.
,
Thomson
N.
(
1983
)
The embryonic cell lineage of the nematode Caenorhabditis elegans.
Dev. Biol
100
,
67
119
Torres-Ruiz
R. A.
,
Juergens
G.
(
1994
)
Mutations in the FASS gene uncouple pattern formation and morphogenesis in Arabidopsis development.
Development
120
,
2967
2978
Waddle
J. A.
,
Cooper
J. A.
,
Waterston
R. H.
(
1994
)
Transient localized accumulation of actin in Caenorhabditis elegans blastomeres with oriented asymmetric divisions.
Development
120
,
2317
2328
White
J.
,
Strome
S.
(
1996
)
Cleavage plane specification in C. elegans: how to divide the spoils.
Cell
84
,
195
198
Williams
B. D.
,
Schrank
B.
,
Huynh
C.
,
Shownkeen
R.
,
Waterston
R. H.
(
1992
)
A genetic mapping system in Caenorhabditis elegans based on polymorphic sequence-tagged sites.
Genetics
131
,
609
624
Zwaal
R. R.
,
Ahringer
J.
,
van Luenen
H. G. A. M.
,
Rushforth
A.
,
Anderson
P.
,
Plasterk
R. H. A.
(
1996
)
G proteins are required for spatial orientation of early cell cleavages in C. elegans embryos.
Cell
86
,
619
629
This content is only available via PDF.