In many vertebrates, removal of early embryonic heart precursors can be repaired, leaving the heart and embryo without visible deficit. One possibility is that this ‘regulation’ involves a cell fate switch whereby cells, perhaps in regions surrounding normal progenitors, are redirected to the heart cell fate. However, the lineage and spatial relationships between cells that are normal heart progenitors and those that can assume that role after injury are not known, nor are their molecular distinctions. We have adapted a laser-activated technique to label single or small patches of cells in the lateral plate mesoderm of the zebrafish and to track their subsequent lineage. We find that the heart precursor cells are clustered in a region adjacent to the prechordal plate, just anterior to the notochord tip. Complete unilateral ablation of all heart precursors with a laser does not disrupt heart development, if performed before the 18-somite stage. By combining extirpation of the heart precursors with cell labeling, we find that cells anterior to the normal cardiogenic compartments constitute the source of regulatory cells that compensate for the loss of the progenitors. One of the earliest embryonic markers of the premyocardial cells is the divergent homeodomain gene, Nkx2.5. Interestingly, normal cardiogenic progenitors derive from only the anterior half of the Nkx2.5-expressing region in the lateral plate mesoderm. The posterior half, adjacent to the notochord, does not include cardiac progenitors and the posterior Nkx2.5-expressing cells do not contribute to the heart, even after ablation of the normal cardiogenic region. The cells that can acquire a cardiac cell fate after injury to the normal progenitors also reside near the prechordal plate, but anterior to the Nkx2.5-expressing domain. Normally they give rise to head mesenchyme. They share with cardiac progenitors early expression of GATA 4. The location of the different elements of the cardiac field, and their response to injury, suggests that the prechordal plate supports and/or the notochord suppresses the cardiac fate.

REFERENCES

Bodmer
R.
(
1993
)
The gene tinman is required for specification of the heart and visceral muscles in Drosophila.
Development
118
,
719
729
Bodmer
R.
,
Jan
L. Y.
,
Jan
Y. N.
(
1990
)
A new homeobox-containing gene, msh-2, is transiently expressed early during mesoderm formation of Drosophila.
Development
110
,
661
669
Chen
J. N.
,
Fishman
M. C.
(
1996
)
Zebrafish tinman homolog demarcates the heart field and initiates myocardial differentiation.
Development
122
,
3809
3816
Chen
J. N.
,
Haffter
P.
,
Odenthal
J.
,
Vogelsang
E.
,
Brand
M.
,
van Eeden
F. J.
,
Furutani-Seiki
M.
,
Granato
M.
,
Hammerschmidt
M.
,
Heisenberg
C. P.
,
Jiang
Y. J.
,
Kane
D. A.
,
Kelsh
R. N.
,
Mullins
M. C.
,
Nusslein-Volhard
C.
(
1996
)
Mutations affecting the cardiovascular system and other internal organs in zebrafish.
Development
123
,
293
302
Cleaver
O. B.
,
Patterson
K. D.
,
Krieg
P. A.
(
1996
).
Overexpression of the tinman -related genes XNkx-2.5 and XNkx-2.3 in Xenopus embryos results in myocardial hyperplasia.
Development
122
,
3549
3556
Dent
J. A.
,
Polson
A. G.
,
Klymkowsky
M. W.
(
1989
)
A whole-mount immunocytochemical analysis of the expression of the intermediate filament protein vimentin in Xenopus.
Development
105
,
61
74
Evans
S. M.
,
Yan
W.
,
Murillo
P.
,
Ponce
J.
,
Papalopulu
N.
(
1995
).
tinman, a Drosophila homeobox gene required for heart and visceral mesoderm specification, may be represented by a family of genes in vertebrates: XNkx-2.3, a second vertebrate homologue of tinman.
Development
121
,
3889
3899
Frasch
M.
(
1995
)
Induction of visceral and cardiac mesoderm by ectodermal Dpp in the.
Nature
374
,
464
467
Garcia-Martinez
V.
,
Schoenwolf
G. C.
(
1993
)
Primitive-streak origin of the cardiovascular system in avian.
Dev. Biol
159
,
706
719
Gourdie
R. G.
,
Mima
T.
,
Thompson
R. P.
,
Mikawa
T.
(
1995
)
Terminal diversification of the myocyte lineage generates Purkinje fibers of the cardiac conduction system.
Development
121
,
1423
1431
Grepin
C.
,
Nemer
G.
,
Nemer
M.
(
1997
)
Enhanced cardiogenesis in embryonic stem cells overexpressing the.
Development
124
,
2387
2395
Jiang
Y.
,
Evans
T.
(
1996
)
The XenopusGATA-4/5/6 genes are associated with cardiac.
Dev. Biol
174
,
258
270
Kimmel
C. B.
,
Ballard
W. W.
,
Kimmel
S. R.
,
Ullmann
B.
,
Schilling
T. F.
(
1995
)
Stages of embryonic development of the zebrafish.
Dev. Dyn
203
,
253
310
Komuro
I.
,
Izumo
S.
(
1993
)
Csx: A murine homeobox-containing gene specifically expressed in the developing heart.
Proc. Natl. Acad. Sci. USA
90
,
8145
8149
Kuo
C. T.
,
Morrisey
E. E.
,
Anandappa
R.
,
Sigrist
K.
,
Lu
M. M.
,
Parmacek
M. S.
,
Soudais
C.
,
Leiden
J. M.
(
1997
)
GATA4 transcription factor is required for ventral morphogenesis and.
Genes Dev
11
,
1048
1060
Lee
K. H.
,
Xu
Q.
,
Breitbart
R. E.
(
1996
).
A new tinman -related gene, nkx2.7, anticipates the expression of nkx2.5 and nkx2.3 in zebrafish heart and pharyngeal endoderm.
Dev. Biol
180
,
722
731
Lee
R. K. K.
,
Stainier
D. Y. R.
,
Weinstein
B. M.
,
Fishman
M. C.
(
1994
)
Cardiovascular development in the zebrafish II. Endocardial progenitors are sequestered within the heart field.
Development
120
,
3361
3366
Lints
T. J.
,
Parsons
L. M.
,
Hartley
L.
,
Lyons
I.
,
Harvey
R. P.
(
1993
).
Nkx-2.5: a novel murine homeobox gene expressed in early heart progenitor cells and their myogenic descendants.
Development
119
,
41
–.
Melby
A. E.
,
Warga
R. M.
,
Kimmel
C. B.
(
1996
)
Specification of cell fa)(tes at the dorsal margin of the zebrafish gastrula.
Development
122
,
2225
2237
Mikawa
T.
,
Borisov
A.
,
Brown
A. M.
,
Fischman
D. A.
(
1992
)
Clonal analysis of cardiac morphogenesis in the chicken embryo using.
Dev.)(Dyn
193
,
11
23
Molkentin
J. D.
,
Lin
Q.
,
Duncan
S. A.
,
Olson
E. N.
(
1997
)
Requirement of the transcription factor GATA4 for heart tube.
Genes Dev
11
,
1061
1072
Sater
A. K.
,
Jacobson
A. G.
(
1989
)
The specification of heart mesoderm occurs during gastrulation in.
Development
105
,
821
830
Sater
A. K.
,
Jacobson
A. G.
(
1990
)
The restriction of the heart morphogenetic field in Xenopuslaevis.
Dev. Biol
140
,
328
336
Schultheiss
T. M.
,
Burch
J. B.
,
Lassar
A. B.
(
1997
)
A role for bone morphogenetic proteins in the induction of cardiac.
Genes Dev
11
,
451
462
Schultheiss
T. M.
,
Xydas
S.
,
Lassar
A. B.
(
1995
)
Induction of avian cardiac myogenesis by anterior endoderm.
Development
121
,
4203
4214
Serbedzija
G. N.
,
Dickinson
M.
,
McMahon
A. P.
(
1996
)
Cell death in the CNS of the Wnt-1 mutant mouse.
J.)(Neurobiol
31
,
275
282
Stainier
D. Y. R.
,
Fishman
M. C.
(
1992
)
Patterning the zebrafish heart tube: Acquisition of anteroposterior polarity.
Dev. Biol
153
,
91
101
Tonissen
K. F.
,
Drysdale
T. A.
,
Lints
T. J.
,
Harvey
R. P.
,
Krieg
P. A.
(
1994
).
XNkx-2.5, a Xenopus gene related to Nkx-2.5 and tinman: evidence for a conserved role in cardiac development.
Dev. Biol
162
,
325
328
This content is only available via PDF.