In this study, we have investigated the role of the embryonic mesenchyme in the development of the pancreas. We have compared the development in vitro of E12.5 rat pancreatic rudiments grown in the presence or absence of mesenchyme. When the E12.5 pancreatic epithelial rudiment is cultured in the presence of its surrounding mesenchyme, both morphogenesis and cytodifferentiation of the exocrine component of the pancreas are completely achieved, while only a few immature endocrine cells develop. The pancreatic rudiments grown in the absence of mesenchyme develop in a completely different way; the exocrine tissue develops poorly and fails to undergo acinar morphogenesis, while the endocrine tissue develops actively. Four times more insulin-positive cells develop after removal of the mesenchyme than in the cultures performed in the presence of mesenchyme. Moreover, the insulin-expressing cells developed in the mesenchyme-depleted rudiments appear mature since they do not coexpress glucagon, express the glucose transporter Glut-2 and express Rab3A, a molecule associated with the secretory granules. Moreover, these endocrine cells are able to associate and form true islets. Both the inductive effect of the mesenchyme on the proper development of the exocrine tissue and its repressive effect on the development of the endocrine cells are mediated by soluble factors. Follistatin, which is expressed by E12.5 pancreatic mesenchyme, can mimic both inductive and repressive effects of the mesenchyme. Follistatin could thus represent one of the mesenchymal factors required for the development of the exocrine tissue while exerting a repressive role on the differentiation of the endocrine cells.

REFERENCES

Ahlgren
U.
,
Jonsson
J.
,
Edlund
H.
(
1996
)
The morphogenesis of the pancreatic mesenchyme is uncoupled from that of the pancreatic epithelium in IPF1/PDX1-deficient mice.
Development
122
,
1409
1416
Alpert
S.
,
Hanahan
D.
,
Teitelman
G.
(
1988
)
Hybrid insulin genes reveal a developmental lineage for pancreatic endocrine cells and imply a relationship with neurons.
Cell
53
,
295
308
Andrew
A.
,
Rawdon
B.
,
Alison
B.
(
1994
)
Failure of insulin cells to develop in cultured embryonic chick pancreas: a model system for the detection of factors supporting insulin cell differentiation.
In vitro cell dev biol
30
,
664
670
Atouf
F.
,
Czernichow
P.
,
Scharfmann
R.
(
1997
)
Expression of neuronal traits in pancreatic beta cells: implication of NRSF/REST, a neuron-restrictive silencer.
J. Biol Chem
272
,
1929
1934
Chomczynski
P.
,
Sacchi
N.
(
1987
)
Single-step method of RNA isolation by acid guanidium thiocyanate-phenol-chloroform extraction.
Anal Biochem
162
,
156
159
Church
G.
,
Gilbert
W.
(
1984
)
Genomic sequencing.
Proc Natl Acad Sci USA
81
,
1991
1995
Dong
Z.
,
Brennan
A.
,
Liu
N.
,
Yarden
Y.
,
Lefkowitz
G.
,
Mirsky
R.
,
Jenssen
K.
(
1995
)
Neu differentiation factor is a neuron-glia signal and regulates survival, proliferation, and maturation of rat Schwann cell precursors.
Neuron
15
,
585
596
Dudek
R.
,
Lawrence
I.
,
Ronald
J.
,
Hill
S.
,
Johnson
R.
(
1991
)
Induction of islet cytodifferentiation by fetal mesenchyme in adult pancreatic ductal epithelium.
Diabetes
40
Furukawa
M.
,
Eto
Y.
,
Kojima
I.
(
1995
).
Expression of immunoreactiva activin A in fetal rat pancreas.
Endocrine Journal
42
,
63
68
Gittes
G.
,
Galante
P.
,
Hanahan
D.
,
Rutter
W.
,
Debas
H.
(
1996
)
Lineage specific morphogenesis in the developing pancreas: role of mesenchymal factors.
Development
122
,
439
447
Golosow
N.
,
Grobstein
C.
(
1962
)
Epitheliomesenchymal interaction in pancreatic morphogenesis.
Dev Biol
4
,
242
255
Gross
R.
,
Mehler
M.
,
Mabie
P.
,
Zang
Z.
,
Santschi
L.
,
Kessler
J.
(
1996
)
Bone morphogenetic proteins promote astroglial lineage commitment by mammalian subventricular zone progenitor cells.
Neuron
17
,
595
606
Gu
D.
,
Lee
M.-S.
,
Krahl
T.
,
Sarvetnick
N.
(
1994
)
Transitional cells in the regeneration pancreas.
Development
120
,
1873
1881
Henry
G.
,
Brivalou
I.
,
Kessler
,
Hemmati-Brivalou
A.
,
Melton
D.
(
1996
)
TGF-signals and a prepattern in Xenopus laevis endoderm development.
Development
122
,
1007
1015
Herrera
P.
,
Huarte
J.
,
Sanvito
F.
,
Meda
P.
,
Orci
L.
,
Vassali
J.
(
1991
)
Embryogenesis of the murine pancreas; early expression of pancreatic polypeptide gene.
development
113
,
1257
1265
Jackerott
M.
,
Oster
A.
,
Larsson
L.
(
1996
)
PYY in developing murine islet cells: comparisons to development of islet hormones, NPY, and BrdU incorporation.
J Histochem Cytochem
44
,
809
817
Kallman
F.
,
Grobstein
C.
(
1968
)
Fine structure of differentiating mouse pancreatic exocrine cells in transfilter culture.
J Cell Biol
20
,
399
413
Kedinger
M.
,
Simon
P.
,
Grenier
J.
,
Haffen
K.
(
1981
)
Role of epithelial-mesenchymal interactions in the ontogenesis of intestinal brush border enzymes.
Dev Biol
86
,
339
347
LeDouarin
N.
(
1988
)
On the origin of pancreatic endocrine cells.
Cell
53
,
169
171
Lyons
K.
,
Hogan
B.
,
Robertson
E.
(
1995
)
Colocalization of BMP 7 and BMP 2 RNAs suggests that these factors cooperatively mediate tissue interactions during mouse development.
Mech Dev
50
,
71
83
Mashima
H.
,
Ohnishi
H.
,
Wakabayashi
K.
,
Mine
T.
,
Miyagawa
J.
,
Hanafusa
T.
,
Seno
M.
,
Yamada
H.
,
Kojima
I.
(
1996
)
Betacellulin and activin A coordinately convert amylase-secreting pancreatic AR42J into insulin-secreting cells.
J Clin Invest
97
,
1647
1654
Montesano
R.
,
Mouron
P.
,
Amherdt
M.
,
Orci
L.
(
1983
)
Collagen matrix promotes reorganization of pancreatic endocrine cell monolayers into islet-like organoids.
J Cell Biol
97
,
935
939
Nakamura
T.
,
Takio
K.
,
Eto
Y.
,
Shibai
H.
,
Titani
K.
,
Sugino
H.
(
1990
)
Activin-binding protein from rat ovary is follistatin.
Science
247
,
836
838
Pang
K.
,
Mukonoweshuro
C.
,
Wong
G.
(
1994
)
Beta cells arise from glucose transporter type 2 (Glut2)-expressing epithelial cells of the developing pancreas.
Proc Natl Acad Sci USA
91
,
9559
9563
Regazzi
R.
,
Ravazzola
M.
,
Lezzi
M.
,
Lang
J.
,
Zahraoui
A.
,
Andereggen
E.
,
Morel
P.
,
Takai
Y.
,
Wollheim
C.
(
1996
)
Expression, localization and functional role of small GTPases of the Rab3 family in insulin-secreting cells.
J Cell Sci
109
,
2265
2273
Ritvos
O.
,
Tuuri
T.
,
Eramaa
M.
,
Sainio
K.
,
Hilden
K.
,
Saxen
L.
,
Gilbert
S.
(
1995
)
Activin disrupts epithelial branching morphogenesis in developing glandular organs of the mouse.
Mechanisms of Development
50
,
229
245
Rutter
W.
,
Pictet
R.
,
Harding
J.
,
Chirgwin
J.
,
MacDonald
R.
,
Przybyla
A.
(
1978
)
An analysis of pancreattic development: role of mesenchymal factor and other extracellular factors.
Symp Soc Dev Biol
35
,
205
227
Sanvito
F.
,
Nichols
A.
,
Herrera
P.
,
Huarte
J.
,
Wohlvend
A.
,
Vassali
J.
,
Orci
L.
(
1995
)
TGF-1 overexpression in murine pancreas induces chronic pancreatitis and, together with TNF-, triggers insulin-dependent diabetes.
Biochem Biophys Res Commun
217
,
1279
1286
Shah
N.
,
Marchionni
M.
,
Isaacs
I.
,
Stroobant
P.
,
Anderson
D.
(
1994
)
Glial growth factor restrics mammalian neural crest stem cells to a glial fate.
Cell
77
,
349
360
Thorens
B.
,
Sarkar
H.
,
Kaback
H.
,
Lodish
H.
(
1988
)
Cloning and functional expression in bacteria of a novel glucose transporter present in liver, intestine, kidney, and-pancreatic islet cells.
Cell
55
,
281
290
Ueno
N.
,
Ling
N.
,
Ying
S.
,
Esch
F.
,
Shimazaki
S.
,
Guillemin
R.
(
1987
)
Isolation and partial characterization of follistatin: a novel Mr 35,000 monomeric protein that inhibits the release of follicle stimulating hormone.
Proc Natl Acad Sci USA
84
,
8282
8286
Wessels
N.
,
Cohen
J.
(
1967
)
Early pancreas organogenesis: morphogenesis, tissue interactions, and mass effects.
Dev Biol
15
,
237
270
Wessels
N.
,
Evans
J.
(
1968
)
Ultrastuctural studies of early morphogenesis and cytodifferentiation in the embryonic mammalian pancreas.
Dev Biol
17
,
413
446
Westendorf
J.
,
Rao
P.
,
Gerace
L.
(
1994
)
Cloning of cDNAs for M-phase phosphoproteins recognized by the MPM2 monoclonal antibody and determination of the phosphorylated epitope.
Proc Natl Acad Sci USA
91
,
714
718
Yamashita
H.
,
Dijke
P. t.
,
Huylebroeck
D.
,
Sampath
T. K.
,
Andries
M.
,
Smith
J.
,
Heldin
C.
,
Miyazono
K.
(
1995
)
Osteogenic protein-1 binds to activin type II receptors and induces certain activin-like effects.
J Cell Biol
130
,
217
226
This content is only available via PDF.