During Drosophila gastrulation, mesodermal precursors are brought into the interior of the embryo by formation of the ventral furrow. The first steps of ventral furrow formation involve a flattening of the apical surface of the presumptive mesodermal cells and a constriction of their apical diameters. In embryos mutant for folded gastrulation (fog), these cell shape changes occur but the timing and synchrony of the constrictions are abnormal. A similar phenotype is seen in a maternal effect mutant, concertina (cta). fog encodes a putative secreted protein whereas cta encodes an (alpha)-subunit of a heterotrimeric G protein. We have proposed that localized expression of the fog signaling protein induces apical constriction by interacting with a receptor whose downstream cellular effects are mediated by the cta G(alpha)protein. <P> In order to test this model, we have ectopically expressed fog at the blastoderm stage using an inducible promoter. In addition, we have examined the constitutive activation of cta protein by blocking GTP hydrolysis using both in vitro synthesized mutant alleles and cholera toxin treatment. Activation of the fog/cta pathway by any of these procedures results in ectopic cell shape changes in the gastrula. Uniform fog expression rescues the gastrulation defects of fog null embryos but not cta mutant embryos, arguing that cta functions downstream of fog expression. The normal location of the ventral furrow in embryos with uniformly expressed fog suggests the existence of a fog-independent pathway determining mesoderm-specific cell behaviors and invagination. Epistasis experiments indicate that this pathway requires snail but not twist expression.

REFERENCES

Alberga
A.
,
Boulay
J. L.
,
Kempe
E.
,
Dennefeld
C.
,
Haenlin
M.
(
1991
)
The snail gene required for mesoderm formation in Drosophila is expressed dynamically in derivatives of all three germ layers.
Development
111
,
983
992
Boulay
J. L.
,
Dennefeld
C.
,
Alberga
A.
(
1987
)
The Drosophila developmental gene snail encodes a protein with nucleic acid binding fingers.
Nature
330
,
395
398
Costa
M.
,
Wilson
E. T.
,
Wieschaus
E.
(
1994
)
A putative cell signal encoded by the folded gastrulation gene coordinates cell shape changes during Drosophila gastrulation.
Cell
76
,
1075
1089
Edgar
B. A.
,
O'Farrell
P. H.
(
1990
)
The three postblastoderm cell cycles in Drosophila embryogenesis are regulated in G2 by string.
Cell
62
,
469
480
Foe
V.
(
1989
)
Mitotic domains reveal early commitment of cells in Drosophila embryos.
Development
107
,
1
22
González-Crespo
S.
,
Levine
M.
(
1993
)
Interactions between dorsal and the helix-loop-helix proteins initiate the differentiation of the embryonic mesoderm and neuroectoderm in Drosophila.
Genes Dev
7
,
1703
1713
Gray
S.
,
Szymanski
P.
,
Levine
M.
(
1994
)
Short-range repression permits multiple enhancers to function autonomously within a complex promotor.
Genes Dev
8
,
1829
1838
Ip
Y. T.
,
Maggert
K.
,
Levine
M.
(
1994
)
Uncoupling gastrulation and mesoderm differentiation in the Drosophila embryo.
EMBO J
13
,
5826
5834
Ip
Y.T.
,
Park
R.E.
,
Kosman
D.
,
Yazdanbakhsh
K.
,
Levine
M.
(
1992
)
dorsal-twist interactions establish snail expression in the presumptive mesoderm of the Drosophila embryo.
Genes Dev
6
,
1518
1530
Irvine
K. D.
,
Wieschaus
E.
(
1994
)
Cell intercalation during Drosophila germ band extension and its regulation by pair-rule segmentation genes.
Development
120
,
827
841
Kam
Z.
,
Minden
J. S.
,
Agard
D. A.
,
Sedat
J. W.
,
Leptin
M.
(
1991
)
Drosophila gastrulation: Analysis of cell shape changes in living embryos by three-dimensional fluorescence microscopy.
Development
112
,
365
370
Kosman
D.
,
Ip
Y. T.
,
Levine
M.
,
Arora
K.
(
1991
)
Establishment of the mesoderm-neuroectoderm boundary in the Drosophila embryo.
Science
254
,
118
122
Leptin
M.
(
1991
)
twist and snail as positive and negative regulators during Drosophila mesoderm development.
Genes Dev
5
,
1568
1576
Leptin
M.
,
Grunewald
B.
(
1990
)
Cell shape changes during gastrulation in Drosophila.
Development
110
,
73
84
Manoukian
A. S.
,
Krause
H. M.
(
1992
)
Concentration-dependent activities of the even-skipped protein in Drosophila embryos.
Genes Dev
6
,
1740
1751
Moss
J.
,
Vaughan
M.
(
1977
)
Mechanism of action of choleragen. Evidence for ADP-ribosyltransferase activity with arginine as an acceptor.
J. Biol. Chem
252
,
2455
2457
Parks
S.
,
Wieschaus
E.
(
1991
)
The Drosophila gastrulation gene concertina encodes a G alpha like subunit.
Cell
64
,
447
458
Roth
S.
,
Stein
D.
,
Nusslein-Volhard
C.
(
1989
)
A gradient of nuclear localization of the dorsal protein determines pattern in the Drosophila embryo.
Cell
59
,
1189
202
Serano
T. L.
,
Cheung
H. K.
,
Frank
L. H.
,
Cohen
R. S.
(
1994
)
P element transformation vectors for studying Drosophila melanogaster oogenesis and early embryogenesis.
Gene
138
,
181
186
Simpson
P.
(
1983
)
Maternal-zygotic gene interactions during formation of the dorsal-ventral pattern in Drosophila embryos.
Genetics
105
,
615
632
Strathman
M.
,
Simon
M. I.
(
1990
)
G protein diversity: a distinct class of alpha subunits is present in vertebrates and invertebrates.
Proc. Nat. Acad. Sci. USA
87
,
9113
9117
Strathman
M.
,
Wilkie
T. M.
,
Simon
M. I.
(
1989
)
Diversity of the G-protein family: sequences from five additional a subunits in the mouse.
Proc. Nat. Acad. Sci. USA
86
,
7407
7409
Sweeton
D.
,
Parks
S.
,
Costa
M.
,
Wieschaus
E.
(
1991
)
Gastrulation in Drosophila: The formation of the ventral furrow and posterior midgut invaginations.
Development
112
,
775
789
Thisse
B.
,
Stoetzel
C.
,
Gorostiza-Thisse
C.
,
Perrin-Schmitt
F.
(
1988
)
Sequence of the twist gene and nuclear localization of its protein in endomesodermal cells of early Drosophila embryos.
EMBO J
7
,
2175
2183
Thisse
B.
,
Stoetzel
C.
,
El Messal
M.
,
Perrin-Schmitt
F.
(
1987
)
Genes of the Drosophila maternal group control the specific expression of the zygotic gene twist in presumptive mesodermal cells.
Genes Dev
1
,
709
715
Turner
F. R.
,
Mahowald
A. P.
(
1977
)
Scanning electron microscopy of Drosophila melanogaster embryogenesis. II. Gastrulation and segmentation.
Dev. Biol
57
,
403
416
Voyno-Yasenetskaya
T.
,
Pace
A. M.
,
Bourne
H.R.
(
1994
)
Mutant alpha subunits of G12 and G13 proteins induce neoplasic transformation of Rat-1 fibroblasts.
Oncogene
9
,
2559
2565
Wieschaus
E.
,
Sweeton
D.
(
1988
)
Requirements for X-linked zygotic gene activity during cellularization of early Drosophila embryos.
Development
104
,
483
493
Wilkie
T. M.
,
Yokoyama
S.
(
1994
)
Evolution of the G protein alpha subunit mutigene family.
Soc. Gen. Physiol. Ser
49
,
249
270
Xu
N.
,
Voyno-Yasenetskaya
T.
,
Gutkind
J. S.
(
1994
)
Potent transforming activity of the G13 alpha subunit defines a novel family of oncogenes.
Biochem. Biophys. Res. Commun
201
,
603
609
This content is only available via PDF.