Hsp70 is a broadly conserved thermotolerance factor, but inhibits growth at normal temperatures and cannot be induced in early embryos. We report that in Drosophila embryos the temporal and spatial patterns of Hsp70 inducibility were unexpectedly complex, with striking differences between the soma and the germline. In both, regulation occurred at the level of transcription. During the refractory period for Hsp70 induction, HSF (heat-shock transcription factor) exhibited specific DNA-binding activity characteristic of activation in extracts of heated embryos. Remarkably, however, HSF was restricted to the cytoplasm in intact embryos even after heat shock. HSF moved from the cytoplasm to the nucleus in the absence of heat precisely when the capacity to induce Hsp70 was acquired (cycle 12 of the germline, cycle 13 in the soma). During oogenesis, Hsp70 inducibility was lost in nurse cells around stage 10, in a posterior-to-anterior gradient and HSF redistributed from nucleus to cytoplasm in the same spatiotemporal pattern. In a highly inbred derivative of the Samarkind strain, HSF moved into embryonic nuclei earlier than in our standard wild-type strain. Correspondingly, Hsp70 was inducible earlier, confirming that nuclear transport of HSF controls the inducibility of Hsp70 in early embryos. We also report for the first time the nuclear import patterns of two general transcription factors, RNA polymerase subunit Ilc and TATA binding protein (TBP). Both enter nuclei in a highly synchronous manner, independently of each other and of HSF. The import of TBP coincides with the first reported appearance of transcripts in the embryo. We suggest that the potentiation of general and heat shock-specific transcription in Drosophila embryos is controlled by the developmentally programmed relocalization of general and heat shock-specific transcription factors. Restricted nuclear entry of HSF represents a newly described mechanism for regulating the heat-shock response.

REFERENCES

Arrigo
A. P.
,
Tanguay
R. M.
(
1991
)
Expression of heat shock proteins during development in Drosophila.
Results & Problems in Cell Differentiation
17
,
106
119
Clos
J.
,
Westwood
J. T.
,
Becker
P. B.
,
Wilson
S.
,
Lambert
K.
,
Wu
C.
(
1990
)
Molecular cloning and expression of a hexameric Drosophila heat shock factor subject to negative regulation.
Cell
63
,
1085
1097
Craig
E. A.
,
Ingolia
T. D.
,
Manseau
L. J.
(
1983
)
Expression of Drosophila heat-shock cognate genes during heat shock and development.
Dev. Biol
99
,
418
426
Dellavalle
R. P.
,
Petersen
R.
,
Lindquist
S.
(
1994
)
Preferential deadenylation of Hsp70 mRNA plays a key role in regulating Hsp70 expression in Drosophila melanogaster.
Mol. Cell. Biol
14
,
3646
3659
Erickson
J. W.
,
Cline
T. W.
(
1993
)
A bZIP protein, sisterless-a, collaborates with bHLH transcription factors early in Drosophila development to determine sex.
Genes Dev
7
,
1688
1702
Feder
J. H.
,
Rossi
J. M.
,
Solomon
J.
,
Solomon
N.
,
Lindquist
S.
(
1992
)
The consequences of expressing hsp70 in Drosophila cells at normal temperatures.
Genes Dev
6
,
1402
1413
Foe
V. E.
,
Alberts
B. M.
(
1983
)
Studies of nuclear and cytoplasmic behavior during the five mitotic cycles that precede gastrulation in drosophila embryogenesis.
J. Cell Sci
61
,
31
70
Francis
D.
,
Barlow
P. W.
(
1988
)
Temperature and the cell cycle.
Symp. Soc. Exp. Biol
42
,
181
201
Heikkila
J. J.
,
Kloc
M.
,
Bury
J.
,
Schultz
G. A.
,
Browder
L. W.
(
1985
)
Acquisition of the heat-shock response and thermotolerance during early development of Xenopus laevis.
Dev. Biol
107
,
483
489
Ish-Horowicz
D.
,
Pinchin
S. M.
,
Schedl
P.
,
Artavanis-Tsakonas
S.
,
Mirault
M. E.
(
1979
)
Genetic and molecular analysis of the 87A7 and 87C1 heat-inducible loci of D. melanogaster.
Cell
18
,
1351
1358
Kurtz
S.
,
Rossi
J.
,
Petko
L.
,
Lindquist
S.
(
1986
)
An ancient developmental induction: heat-shock proteins induced in sporulation and oogenesis.
Science
231
,
1154
1157
Larson
J. S.
,
Schuetz
T. J.
,
Kingston
R. E.
(
1988
)
Activation in vitro of sequence-specific DNA binding by a human regulatory factor.
Nature
335
,
372
375
Lis
J.
,
Wu
C.
(
1993
)
Protein traffic on the heat shock promoter: parking, stalling, and trucking along.
Cell
74
,
1
4
Maldonado-Codina
G.
,
Llamazares
S.
,
Glover
D. M.
(
1993
)
Heat shock results in cell cycle delay and synchronisation of mitotic domains in cellularised Drosophila melanogaster embryos.
J. Cell Sci
105
,
711
720
McGarry
T. J.
,
Lindquist
S.
(
1985
)
The preferential translation of Drosophila hsp70 mRNA requires sequences in the untranslated leader.
Cell
42
,
903
911
Morange
M.
,
Diu
A.
,
Bensaude
O.
,
Babinet
C.
(
1984
)
Altered expression of heat shock proteins in embryonal carcinoma and mouse early embryonic cells.
Mol. Cell. Biol
4
,
730
735
Morimoto
R.
,
Sarge
K. D.
,
Abrayava
K.
(
1992
)
Transcriptional regulation of heat shock gene.
J. Biol. Chem
267
,
21987
21990
Nitta
M.
,
Okamura
H.
,
Aizawa
S.
,
Yamaizumi
M.
(
1997
)
Heat shock induces transient p53-dependent cell cycle arrest at G1/S.
Oncogene
15
,
561
568
Nunes
E.
,
Siede
W.
(
1996
)
Hyperthermia and paraquat-induced G1 arrest in the yeast Saccharomyces cerevisiae is independent of the RAD9 gene.
Radiat. Environ. Biophys
35
,
55
57
Petersen
R.
,
Lindquist
S.
(
1988
)
The Drosophila hsp70 message is rapidly degraded at normal temperatures and stabilized by heat shock.
Gene
72
,
161
168
Pritchard
D. K.
,
Schubiger
G.
(
1996
)
Activation of transcription in Drosophila embryos is a gradual process mediated by the nucleocytoplasmic ratio.
Genes Dev
11
,
1131
1140
Roccheri
M. C.
,
Sconzo
G.
,
Di
C. M.
,
Di
B. M. G.
,
Pirrone
A.
,
Gambino
R.
,
Giudice
G.
(
1982
)
Heat-shock proteins in sea urchin embryos: Transcriptional and posttranscriptional regulation.
Differentiation
22
,
175
178
Roti Roti
J. L.
,
Mackey
M. A.
,
Higashikubo
R.
(
1992
)
The effects of heat shock on cell proliferation.
Cell Prolif
25
,
89
99
Rougvie
A. E.
,
Lis
J. T.
(
1988
)
The RNA polymerase II molecule at the 5end of the uninduced hsp70 gene of D. melanogaster is transcriptionally engaged.
Cell
54
,
795
804
Ruden
D. M.
,
Jackle
H.
(
1995
)
Mitotic delay dependent survival identifies components of cell cycle control in the Drosophila blastoderm.
Development
121
,
63
73
Sarge
K. D.
,
Murphy
S. P.
,
Morimoto
R. I.
(
1993
)
Activation of heat shock gene transcription by heat shock factor 1 involves oligomerization, acquisition of DNA binding activity and nuclear localization and can occur in the absence of stress.
Mol. Cell Biol
13
,
1392
1407
Sheldon
L. A.
,
Kingston
R. E.
(
1993
)
Hydrophobic coiled-coil domains regulate the subcellular localization of human heat-shock factor 2.
Genes Dev
7
,
1549
1558
Sistonen
L.
,
Sarge
K. D.
,
Morimoto
R. I.
(
1994
)
Human heat shock factor1 and 2 are differentially activated and can synergistically induce hsp70 gene transcription.
Mol. Cell Biol
14
,
2087
2099
Tautz
D.
,
Pfeifle
C.
(
1989
)
A nonradioactive in situ hybridization method for the localization of specific RNAs in Drosophila embryos reveals translational control of the segmantation gene hatchback.
Chromosoma
98
,
81
85
Velazquez
J. M.
,
Sonoda
S.
,
Bugaisky
G.
,
Lindquist
S.
(
1983
)
Is the major Drosophila heat shock protein present in cells that have not been heat shocked?.
J. Cell. Biol
96
,
286
290
Welte
M. A.
,
Duncan
I.
,
Lindquist
S.
(
1995
)
The basis for a heat-induced developmental defect: defining crucial lesions.
Genes Dev
9
,
2240
2250
Welte
M. A.
,
Tetrault
J. M.
,
Dellavalle
R. P.
,
Lindquist
S. L.
(
1993
)
A new method for manipulating transgenes: engineering heat tolerance in a complex, multicellular organism.
Curr. Biol
3
,
842
853
Westwood
J. T.
,
Clos
J.
,
Wu
C.
(
1991
)
Stress-induced oligomerization and chromosomal relocalization of heat-shock factor.
Nature
353
,
822
827
Winegarden
N. A.
,
Wong
K. S.
,
Sopta
M.
,
Westwood
J. T.
(
1996
)
Sodium salicylate decreases intracellular ATP, induces both heat shock factor binding and chromosomal puffing, but does not induce hsp70 gene transcription in Drosophila.
J. Biol. Chem
271
,
26971
26980
Wu
C.
(
1980
)
The 5ends of Drosophila heat shock genes in chromatin are hypersensitive to DNase I.
Nature
286
,
854
860
Wu
C.
(
1995
)
Heat shock transcription factors: structure and regulation.
Annu. Rev. Cell Dev. Biol
11
,
441
469
Yost
H. J.
,
Lindquist
S.
(
1986
)
RNA splicing is interrupted by heat shock and is rescued by heat shock protein synthesis.
Cell
45
,
185
193
Zandi
D.
,
Tran
T.-N. T.
,
Chamberlain
W.
,
Parker
C. S.
(
1997
)
Nuclear entry, oligomerization, and DNA binding of the Drosophila heat shock transcription factor are regulated by a unique nuclear localization sequence.
Genes Dev
11
,
1299
1314
Zimmerman
J. L.
,
Cohill
P. R.
(
1991
)
Heat shock and thermotolerance in plant and animal embryogenesis.
New Biol
3
,
641
650
Zimmerman
J. L.
,
Petri
W.
,
Meselson
M.
(
1983
)
Accumulation of a specific subset of D. melanogaster heat shock mRNAs in normal development without heat shock.
Cell
32
,
1161
1170
This content is only available via PDF.