Brachyury is a member of the T-box gene family and is required for formation of posterior mesoderm and notochord during vertebrate development. The ability of Brachyury to activate transcription is essential for its biological function, but nothing is known about its target genes. Here we demonstrate that Xenopus Brachyury directly regulates expression of eFGF by binding to an element positioned approximately 1 kb upstream of the eFGF transcription start site. This site comprises half of the palindromic sequence previously identified by binding site selection and is also present in the promoters of the human and mouse homologues of eFGF.

REFERENCES

REFERENCES
Amaya
E.
,
Musci
T. J.
,
Kirschner
M. W.
(
1991
)
Expression of a dominant negative mutant of the FGF receptor disrupts mesoderm formation in Xenopus embryos.
Cell
66
,
257
270
Ambrosetti
D. C.
,
Basilico
C.
,
Dailey
L.
(
1997
)
Synergistic activation of the fibroblast growth factor 4 enhancer by Sox2 and Oct-3 depends on protein-protein interactions facilitated by a specific spatial arrangement of factor binding sites.
Mol. Cell Biol
17
,
6321
6329
Conlon
F. L.
,
Sedgwick
S. G.
,
Weston
K. M.
,
Smith
J. C.
(
1996
)
Inhibition of Xbra transcription activation causes defects in mesodermal patterning and reveals autoregulation of Xbra in dorsal mesoderm.
Development
122
,
2427
2435
Cunliffe
V.
,
Smith
J. C.
(
1992
)
Ectopic mesoderm formation in Xenopus embryos caused by widespread expression of a Brachyury homologue.
Nature
358
,
427
430
Dyson
S.
,
Gurdon
J. B.
(
1996
)
Activin signalling has a necessary function in Xenopus early development.
Current Biology
7
,
81
84
Gotoh
Y.
,
Masuyama
N.
,
Suzuki
A.
,
Ueno
N.
,
Nishida
E.
(
1995
)
Involvement of the MAP kinase cascade in Xenopus mesoderm induction.
EMBO J
14
,
2491
2498
Halpern
M. E.
,
Ho
R. K.
,
Walker
C.
,
Kimmel
C. B.
(
1993
)
Induction of muscle pioneers and floor plate is distinguished by the zebrafish no tail mutation.
Cell
75
,
99
111
Henikoff
S.
(
1990
)
Ordered deletions for DNA sequencing and in vitro mutagenesis by polymerase extension and exonuclease III gapping of circular templates.
Nuc. Acids Res
18
,
2961
2966
Herrmann
B. G.
,
Kispert
A.
(
1994
)
The T genes in embryogenesis.
Trends Genet
10
,
280
286
Herrmann
B. G.
,
Labeit
S.
,
Poutska
A.
,
King
T. R.
,
Lehrach
H.
(
1990
)
Cloning of the T gene required in mesoderm formation in the mouse.
Nature
343
,
617
622
Isaacs
H. V.
,
Pownall
M. E.
,
Slack
J. M. W.
(
1994
)
eFGF regulates Xbra expression during Xenopus gastrulation.
EMBO J
13
,
4469
4481
Isaacs
H. V.
,
Pownall
M. E.
,
Slack
J. M. W.
(
1995
)
eFGF is expressed in the dorsal mid-line of Xenopus laevis.
Int. J. Dev. Biol
39
,
575
579
Isaacs
H. V.
,
Tannahill
D.
,
Slack
J. M. W.
(
1992
)
Expression of a novel FGF in the Xenopus embryo. A new candidate inducing factor for mesoderm formation and anteroposterior specification.
Development
114
,
711
720
Kispert
A.
,
Herrmann
B. G.
(
1993
)
The Brachyury gene encodes a novel DNA binding protein.
EMBO J
12
,
3211
3220
Kispert
A.
,
Korschorz
B.
,
Herrmann
B. G.
(
1995
)
The T protein encoded by Brachyury is a tissue-specific transcription factor.
EMBO J
14
,
4763
4772
Kroll
K. L.
,
Amaya
E.
(
1996
)
Transgenic Xenopus embryos from sperm nuclear transplantations reveal FGF signalling requirements during gastrulation.
Development
122
,
3173
3183
LaBonne
C.
,
Burke
B.
,
Whitman
M.
(
1995
)
Role of MAP kinase in mesoderm induction and axial patterning during Xenopus development.
Development
121
,
1475
1486
Latinkic
B. V.
,
Umbhauer
M.
,
Neal
K. A.
,
Lerchner
W.
,
Smith
J. C.
,
Cunliffe
V.
(
1997
)
The Xenopus Brachyury promoter is activated by FGF and low concentrations of activin and suppressed by high concentrations of activin and by paired-type homeodomain proteins.
Genes Dev
11
,
3265
3267
Modak
S. P.
,
Principaud
E.
,
Spohr
G.
(
1993
)
Regulation of Xenopus c-myc promoter activity in oocytes and embryos.
Oncogene
8
,
645
654
Mohun
T.
,
Garrett
N.
,
Treisman
R.
(
1987
)
Xenopus cytoskeletal actin and human c-fos promoters share a conserved protein-binding site.
EMBO J
6
,
667
673
Muller
C. W.
,
Herrmann
B. G.
(
1997
)
Crystallographic structure of the T domain-DNA complex of the Brachyury transcription factor.
Nature
389
,
884
888
Papapetrou
C.
,
Edwards
Y. H.
,
Sowden
J. C.
(
1997
)
The T transcription factor functions as a dimer and exhibits a common human polymorphism Gly-177-Asp in the conserved DNA-binding domain.
FEBS Lett
409
,
201
206
Schmidt
C.
,
Wilson
V.
,
Stott
D.
,
Beddington
R. S. P.
(
1997
)
T promoter activity in the absence of functional T protein during axis formation and elongation in the mouse.
Dev. Biol
189
,
161
173
Schulte-Merker
S.
,
Smith
J. C.
(
1995
)
Mesoderm formation in response to Brachyury requires FGF signalling.
Curr. Biol
5
,
62
67
Schulte-Merker
S.
,
van Eeden
F. M.
,
Halpern
M. E.
,
Kimmel
C. B.
,
Nusslein-Volhard
C.
(
1994
)
No tail (ntl) is the zebrafish homologue of the mouse T (Brachyury) gene.
Development
120
,
1009
1015
Sive
H. L.
(
1993
)
The frog prince-ss: A molecular formula for dorsoventral patterning in Xenopus.
Genes Dev
7
,
1
12
Slack
J. M. W.
(
1984
)
Regional biosynthetic markers in the early amphibian embryo.
J. Embryol. Exp. Morph
80
,
289
319
Slack
J. M. W.
(
1994
)
Inducing factors in Xenopus early embryos.
Curr. Biol
4
,
116
126
Smith
J.
(
1997
)
Brachyury and the T-box genes.
Curr. Opin. Gen. Dev
7
,
474
480
Smith
J. C.
,
Price
B. M. J.
,
Green
J. B. A.
,
Weigel
D.
,
Herrmann
B. G.
(
1991
)
Expression of a Xenopus homolog of Brachyury (T) is an immediate-early response to mesoderm induction.
Cell
67
,
79
87
Symes
K.
,
Yaqoob
M.
,
Smith
J. C.
(
1988
)
Mesoderm induction in Xenopus laevis: responding cells must be in contact for mesoderm formation but suppression of epidermal differentiation can occur in single cells.
Development
104
,
609
618
Tada
M.
,
O'Reilly
M.-A. J.
,
Smith
J. C.
(
1997
)
Analysis of competence and of Brachyury autoinduction by use of hormone-inducible Xbra.
Development
124
,
2225
2234
Umbhauer
M.
,
Marshall
C. J.
,
Mason
C. S.
,
Old
R. W.
,
Smith
J. C.
(
1995
)
Mesoderm induction in Xenopus caused by activation of MAP kinase.
Nature
376
,
58
62
Yuan
H.
,
Corbi
N.
,
Basilico
C.
,
Dailey
L.
(
1995
)
Developmental-specific activity of the FGF-4 enhancer requires the synergistic action of Sox2 and Oct-3.
Genes Dev
9
,
2635
2645
This content is only available via PDF.