Laminar distribution of fiber systems is a characteristic feature of hippocampal organization. Ingrowing afferents, e.g. the fibers from the entorhinal cortex, terminate in specific layers, which implies the existence of laminar recognition cues. To identify cues that are involved in the laminar segregation of fiber systems in the hippocampus, we used an in vitro assay to study the adhesion of dissociated entorhinal cells on living hippocampal slices. Here we demonstrate that dissociated entorhinal cells adhere to living hippocampal slices with a lamina-specific distribution that reflects the innervation pattern of the entorhino-hippocampal projection. In contrast, laminae which are not invaded by entorhinal fibers are a poor substrate for cell adhesion. Lamina-specific cell adhesion does not require the neural cell adhesion molecule or the extracellular matrix glycoprotein reelin, as revealed in studies with mutants. However, the pattern of adhesive cues in the reeler mouse hippocampus mimics characteristic alterations of the entorhinal projection in this mutant, suggesting a role of layer-specific adhesive cues in the pathfinding of entorhinal fibers. Lamina-specific cell adhesion is independent of divalent cations, is abolished after cryofixation or paraformaldehyde fixation and is recognized across species. By using a novel membrane adhesion assay, we show that lamina-specific cell adhesion can be mimicked by membrane-coated fluorescent microspheres. Recognition of the adhesive properties of different hippocampal laminae by growing axons, as either a growth permissive or a non-permissive substrate, may provide a developmental mechanism underlying the segregation of lamina-specific fiber projections.
Lamina-specific cell adhesion on living slices of hippocampus
E. Forster, C. Kaltschmidt, J. Deng, H. Cremer, T. Deller, M. Frotscher; Lamina-specific cell adhesion on living slices of hippocampus. Development 1 September 1998; 125 (17): 3399–3410. doi: https://doi.org/10.1242/dev.125.17.3399
Download citation file:
Advertisement
Cited by
Pathway to Independence programme

We’re excited to announce our new Pathway to Independence programme, aimed at supporting postdocs as they go on the job market. Find out more about the scheme in our Editorial.
Call for papers: Metabolic and Nutritional Control of Development and Regeneration

We are welcoming submissions for our next special issue, which will focus on metabolic and nutritional control of development and regeneration. Submission deadline: 15 May 2023.
Webinar: Increasing the visibility and impact of your research
-HUBSwebinar.jpg?versionId=4486)
Would you like to increase the visibility and impact of your research and raise your profile internationally? If so, register for the very practical webinar we are running in association with HUBS on 23 February 2023.
Transitions in development: Daniel Grimes

Daniel Grimes’s lab studies the consequences of ciliary mutations, including left-right patterning defects and scoliosis. We interviewed Daniel to find out more about his career path, his experience of becoming a group leader and the influence of Jurassic Park.
Preprints in Development
(update)-InPreprints.png?versionId=4486)
As part of our efforts to support the use of preprints and help curate the preprint literature, we are delighted to launch a new article type: ‘In preprints’. These pieces will discuss one or more recent preprints and place them in a broader context.