An early set of blastomere specifications occurs during cleavage in the sea urchin embryo, the result of both conditional and autonomous processes, as proposed in the model for this embryo set forth in 1989. Recent experimental results have greatly illuminated the mechanisms of specification in some early embryonic territories, though others remain obscure. We review the progressive process of specification within given lineage elements, and with reference to the early axial organization of the embryo. Evidence for the conditional specification of the veg2 lineage subelement of the endoderm and other potential interblastomere signaling interactions in the cleavage-stage embryo are summarized. Definitive boundaries between mesoderm and endoderm territories of the vegetal plate, and between endoderm and overlying ectoderm, are not established until later in development. These processes have been clarified by numerous observations on spatial expression of various genes, and by elegant lineage labeling studies. The early specification events depend on regional mobilization of maternal regulatory factors resulting at once in the zygotic expression of genes encoding transcription factors, as well as downstream genes encoding proteins characteristic of the cell types that will much later arise from the progeny of the specified blastomeres. This embryo displays a maximal form of indirect development. The gene regulatory network underlying the embryonic development reflects the relative simplicity of the completed larva and of the processes required for its formation. The requirements for postembryonic adult body plan formation in the larval rudiment include engagement of a new level of genetic regulatory apparatus, exemplified by the Hox gene complex.

Anstrom
J. A.
,
Chin
J. E.
,
Leaf
D. S.
,
Parks
A. L.
,
Raff
R. A.
(
1987
)
Localization and expression of msp130, a primary mesenchyme lineage-specific cell surface protein of the sea urchin embryo.
Development
101
,
255
265
Armstrong
N.
,
McClay
D. R.
(
1994
)
Skeletal pattern is specified autonomously by the primary mesenchyme cells in sea urchin embryos.
Dev. Biol
162
,
329
338
Arnone
M.
,
Davidson
E. H.
(
1997
)
The hardwiring of development: Organization and function of genomic regulatory systems.
Development
124
,
1851
1864
Arnone
M. I.
,
Bogarad
L. D.
,
Collazo
A.
,
Kirchhamer
C. V.
,
Cameron
R. A.
,
Rast
J. P.
,
Gregorians
A.
,
Davidson
E. H.
(
1997
)
Green fluorescent protein in the sea urchin: New experimental approaches to transcriptional regulatory analysis in embryos and larvae.
Development
124
,
4649
4659
Arnone
M. I.
,
Martin
E. L.
,
Davidson
E. H.
(
1998
)
Cis -regulation downstream of cell type specification: A single compact element controls the complex expression of the CyIIa gene in sea urchin embryos.
Development
125
,
1381
1395
Behrens
J.
,
von Kries
J. P.
,
Kuhl
M.
,
Bruhn
L.
,
Wedlich
D.
,
Grosschedl
R.
,
Birchmeier
W.
(
1996
)
Functional interaction of-catenin with the transcription factor LEF-1.
Nature
382
,
638
642
Benson
S. C.
,
Sucov
H. M.
,
Stephens
L.
,
Davidson
E. H.
,
Wilt
F.
(
1987
)
A lineage-specific gene encoding a major matrix protein of the sea urchin embryo spicule. I. Authentication of the cloned gene and its developmental expression.
Dev. Biol
120
,
499
506
Bowerman
B.
,
Eaton
B. A.
,
Priess
J. R.
(
1992
)
skn-1, a maternally expressed gene required to specify the fate of ventral blastomeres in the early C. elegans embryo.
Cell
68
,
1061
1075
Bowerman
B.
,
Draper
B. W.
,
Mello
C. C.
,
Priess
J. R.
(
1993
)
The maternal gene skn-1 encodes a protein that is distributed unequally in early C. elegans embryos.
Cell
74
,
443
452
Brindle
P.
,
Nakajima
T.
,
Montminy
M.
(
1995
)
Multiple protein-kinase A-regulated events are required for transcriptional induction by cAMP.
Proc. Natl. Acad. Sci. USA
92
,
10521
10525
Calzone
F. J.
,
Höög
C.
,
Teplow
D. B.
,
Cutting
A. E.
,
Zeller
R. W.
,
Britten
R. J.
,
Davidson
E. H.
(
1991
)
Gene regulatory factors of the sea urchin embryo. I. Purification by affinity chromatography and cloning of P3A2, a novel DNA binding protein.
Development
112
,
335
350
Cameron
R. A.
,
Hough-Evans
B. R.
,
Britten
R. J.
,
Davidson
E. H.
(
1987
)
Lineage and fate of each blastomere of the eight-cell sea urchin embryo.
Genes Dev
1
,
75
85
Cameron
R. A.
,
Fraser
S. E.
,
Britten
R. J.
,
Davidson
E. H.
(
1989
)
The oral-aboral axis of a sea urchin embryo is specified by first cleavage.
Development
106
,
641
647
Cameron
R. A.
,
Davidson
E. H.
(
1991
)
Cell type specification during sea urchin development.
Trends Genet
7
,
212
218
Cameron
R. A.
,
Fraser
S. E.
,
Britten
R. J.
,
Davidson
E. H.
(
1991
)
Macromere cell fates during sea urchin development.
Development
113
,
1085
1092
Cameron
R. A.
,
Britten
R. J.
,
Davidson
E. H.
(
1993
)
The embryonic ciliated band of the sea urchin, Strongylocentrotus purpuratus, derives from both oral and aboral ectoderm territories.
Dev. Biol
160
,
369
376
Cameron
R. A.
,
Davidson
E. H.
(
1997
)
LiCl perturbs ectodermal Veg1lineage allocations in Strongylocentrotus purpuratus embryos.
Dev. Biol
187
,
236
239
Chuang
C. K.
,
Wikramanayake
A. H.
,
Mao
C. A.
,
Li
X. T.
,
Klein
W. H.
(
1996
)
Transient appearance of Strongylocentrotus purpuratus Otx in micromere nuclei: Cytoplasmic retention of SpOtx possibly mediated through an-actinin interaction.
Dev. Genet
19
,
231
237
Coffman
J. A.
,
McClay
D. R.
(
1990
)
A hyaline layer protein that becomes localized to the oral ectoderm and foregut of sea urchin embryos.
Dev. Biol
140
,
93
104
Coffman
J. A.
,
Kirchhamer
C. V.
,
Harrington
M. G.
,
Davidson
E. H.
(
1997
)
SpMyb functions as an intramodular repressor to regulate spatial expression of CyIIIa in sea urchin embryos.
Development
124
,
4717
4727
Cox
K. H.
,
Angerer
L. M.
,
Lee
J. J.
,
Davidson
E. H.
,
Angerer
R. C.
(
1986
)
Cell lineage-specific programs of expression of multiple actin genes during sea urchin embryogenesis.
J. Mol. Biol
188
,
159
172
Cutting
A. E.
,
Höög
C.
,
Calzone
F. J.
,
Britten
R. J.
,
Davidson
E. H.
(
1990
)
Rare maternal mRNAs code for regulatory proteins that control lineage specific gene expression in the sea urchin embryo.
Proc. Natl. Acad. Sci. USA
87
,
7953
7957
Dan
K.
(
1979
)
Studies on unequal cleavage in sea urchins. I. Migration of the nuclei to the vegetal pole.
Dev. Growth Differ
21
,
527
535
Davidson
E. H.
(
1989
)
Lineage-specific gene expression and the regulative capacities of the sea urchin embryo: A proposed mechanism.
Development
105
,
421
445
Davidson
E. H.
(
1990
)
How embryos work: A comparative view of diverse modes of cell fate specification.
Development
108
,
365
389
Davidson
E. H.
(
1991
)
Spatial mechanisms of gene regulation in metazoan embryos.
Development
113
,
1
26
Davidson
E. H.
,
Peterson
K.
,
Cameron
R. A.
(
1995
)
Origin of the adult bilaterian body plans: Evolution of developmental regulatory mechanisms.
Science
270
,
1319
1325
Di Bernardo
M.
,
Russo
R.
,
Olivei
P.
,
Melfi
R.
,
Spinelli
G.
(
1995
)
Homeobox-containing gene transiently expressed in a spatially restricted pattern in the early sea urchin embryo.
Proc. Natl. Acad. Sci. USA
92
,
8180
8184
Ettensohn
C. A.
(
1990
)
The regulation of primary mesenchyme cell patterning.
Dev. Biol
140
,
261
271
Ettensohn
C. A.
(
1992
)
Cell interactions and mesodermal cell fates in the sea urchin embryo.
Development
1992
,
43
51
Ettensohn
C. A.
,
Ruffins
S. W.
(
1993
)
Mesodermal cell interactions inthe sea urchin embryo: Properties of skeletogenic secondary mesenchyme cells.
Development
117
,
1275
1285
Falvo
J. V.
,
Thanos
D.
,
Maniatis
T.
(
1995
)
Reversal of intrinsic DNA bends in the IFNgene enhancer by transcription factors and the architectural protein HMG I (Y).
Cell
83
,
1101
1111
Fol
M. H.
(
1877
)
Sur le premier developpement d'une Étoile de mer.
Comptes Rendus
84
,
357
360
Frudakis
T. N.
,
Wilt
F.
(
1995
)
Two different cis elements collaborate to spatially repress transcription from a sea urchin promoter.
Dev. Biol
172
,
230
241
George
N. C.
,
Killian
C. E.
,
Wilt
F. H.
(
1991
).
Characterization and expression of a gene encoding a 30.6 kD Strongylocentrotus purpuratus spicule matrix protein.
Dev. Biol
147
,
334
342
Ghiglione
C.
,
Lhomond
G.
,
Lepage
T.
,
Gache
C.
(
1993
)
Cell-autonomous expression and position-dependent repression of Li+of two zygotic genes during sea urchin early development.
EMBO J
12
,
87
96
Ghiglione
C.
,
Emily-Fenouil
F.
,
Chang
P.
,
Gache
C.
(
1996
)
Early gene expression along the animal-vegetal axis in sea urchin embryoids and grafted embryos.
Development
122
,
3067
3074
Gibson
A. W.
,
Burke
R. D.
(
1985
)
The origin of pigment cells in embryos of the sea urchin Strongylocentrotus purpuratus.
Dev. Biol
107
,
414
419
Giese
K.
,
Amsterdam
A.
,
Grosschedl
R.
(
1991
)
DNA-binding properties of the HMG domain of the lymphoid-specific transcriptional regulator LEF-1.
Genes Dev
5
,
2567
2578
Giese
K.
,
Cox
J.
,
Grosschedl
R.
(
1992
)
The HMG domain of lymphoid enhancer factor 1 bends DNA and facilitates assembly of functional nucleoprotein structures.
Cell
69
,
185
195
Grimwade
J. E.
,
Gagnon
M. L.
,
Qing
Y.
,
Angerer
R. C.
,
Angerer
L. M.
(
1991
)
Expression of two messenger RNAs encoding EGF-related proteins identifies subregions of sea urchin embryonic ectoderm.
Dev. Biol
143
,
44
57
Guss
K. A.
,
Ettensohn
C. A.
(
1997
)
Skeletal morphogenesis in the sea urchin embryo: Regulation of primary mesenchyme gene expression and skeletal rod growth by ectoderm-derived cues.
Development
124
,
1899
1908
Harada
Y.
,
Yasuo
H.
,
Satoh
N.
(
1995
)
A sea urchin homologue of the chordate Brachyury (T) gene is expressed in the secondary mesenchyme founder cells.
Development
121
,
2747
2754
Harada
Y.
,
Akasaka
K.
,
Shimada
H.
,
Peterson
K. J.
,
Davidson
E. H.
,
Satoh
N.
(
1996
)
Spatial expression of a forkhead homologue in the sea urchin embryo.
Mech. Dev
60
,
163
173
Hardin
J.
(
1989
)
Local shifts in position and polarized motility drive cell rearrangement during sea urchin gastrulation.
Dev. Biol
136
,
430
445
Hardin
J.
(
1995
)
Target recognition by mesenchyme cells during sea urchin gastrulation.
Am. Zool
35
,
358
371
Hardin
J. D.
,
Cheng
L. Y.
(
1986
)
The mechanisms and mechanics of archenteron elongation during sea urchin gastrulation.
Dev. Biol
115
,
490
501
Harkey
M. A.
,
Klueg
K.
,
Sheppard
P.
,
Raff
R. A.
(
1995
)
Structure, expression, and extracellular targeting of PM27, a skeletal protein associated specifically with growth of the sea urchin larval spicule.
Dev. Biol
168
,
549
566
Harrington
M. G.
,
Coffman
J. A.
,
Davidson
E. H.
(
1997
)
Covalent variation is a general property of transcription factors in the sea urchin embryo.
Mol. Mar. Biol. Biotech
6
,
153
162
Henry
J. J.
,
Amemiya
S.
,
Wray
G. A.
,
Raff
R. A.
(
1989
)
Early inductive interactions are involved in restricting cell fates of mesomeres in sea urchin embryo.
Dev. Biol
136
,
140
153
Henry
J. J.
,
Wray
G. A.
,
Raff
R. A.
(
1990
)
The dorsoventral axis is specified prior to first cleavage in the direct developing sea urchin Heliocidaris erythrogramma.
Development
110
,
875
884
Henry
J. J.
,
Klueg
K. M.
,
Raff
R. A.
(
1992
)
Evolutionary dissociation between cleavage, cell lineage and embryonic axes in sea urchin embryos.
Development
114
,
931
938
Hickey
R. J.
,
Boshar
M. F.
,
Crain
W. R.
Jr
(
1987
)
Transcription of three actin genes and a repeated sequence in isolated nuclei of sea urchin embryos.
Dev. Biol
124
,
215
227
Hörstadius
S.
(
1939
)
The mechanics of sea urchin development, studied by operative methods.
Biol. Rev. Cambridge Phil. Soc
14
,
132
179
Hough-Evans
B. R.
,
Britten
R. J.
,
Davidson
E. H.
(
1988
)
Mosaic incorporation and regulated expression of an exogenous gene in the sea urchin embryo.
Dev. Biol
129
,
198
208
Hough-Evans
B. R.
,
Franks
R. R.
,
Zeller
R. W.
,
Britten
R. J.
,
Davidson
E. H.
(
1990
)
Negative spatial regulation of the lineage specific CyIIIa actin gene in the sea urchin embryo.
Development
110
,
41
50
Hurley
D. L.
,
Angerer
L. M.
,
Angerer
R. C.
(
1989
)
Altered expression of spatially regulated embryonic genes in the progeny of separated sea urchin blastomeres.
Development
106
,
567
579
Inoue
C.
,
Kiyomoto
M.
,
Shirai
H.
(
1992
)
Germ cell differentiation in starfish: The posterior enterocoel as the origin of germ cells in Asterina pectinifera.
Develop. Growth & Differ
34
,
413
418
Katoh-Fukui
Y.
,
Noce
T.
,
Ueda
T.
,
Fujiwara
Y.
,
Hashimoto
N.
,
Higashinakagawa
T.
,
Killian
C. E.
,
Livingston
B. T.
,
Wilt
F. H.
,
Benson
S. C.
,
Sucov
H. M.
,
Davidson
E. H.
(
1991
)
The corrected structure of the SM50 spicule matrix protein of Strongylocentrotus purpuratus.
Dev. Biol
145
,
201
202
Khaner
O.
,
Wilt
F.
(
1990
)
The influence of cell interactions and tissue mass on differentiation of sea urchin mesomeres.
Development
109
,
625
634
Khaner
O.
,
Wilt
F.
(
1991
)
Interactions of different vegetal cells with mesomeres during early stages of sea urchin development.
Development
112
,
881
890
Killian
C. E.
,
Wilt
F. H.
(
1989
)
The accumulation and translation of a spicule matrix protein mRNA during sea urchin embryo development.
Dev. Biol
133
,
148
156
Kingsley
P. D.
,
Angerer
L. M.
,
Angerer
R. C.
(
1993
)
Major temporal and spatial patterns of gene expression during differentiation of the sea urchin embryo.
Dev. Biol
155
,
216
234
Kirchhamer
C. V.
,
Davidson
E. H.
(
1996
)
Spatial and temporal information processing in the sea urchin embryo: Modular and intramodular organization of the CyIIIa gene cis -regulatory system.
Development
122
,
333
348
Kirchhamer
C. V.
,
Yuh
C.-H.
,
Davidson
E. H.
(
1996
)
Modular cis -regulatory organization of developmentally expressed genes: Two genes transcribed territorially in the sea urchin embryo, and additional examples.
Proc. Natl. Acad. Sci. USA
93
,
9322
9328
Kitajima
T.
,
Tomita
M.
,
Killian
C. E.
,
Akasaka
K.
,
Wilt
F.
(
1996
)
Expression of spicule matrix protein gene SM30 in embryonic and adult mineralized tissues of sea urchin Hemicentrotus pulcherrimus.
Develop. Growth Differ
38
,
687
695
Kiyomoto
M.
,
Shirai
H.
(
1993
)
The determinant for archenteron formation in starfish: Co-culture of an animal egg fragment-derived cell cluster and a selected blastomere.
Develop. Growth Differ
35
,
99
105
Kominami
T.
(
1988
)
Determination of dorso-ventral axis in early embryos of the sea urchin, Hemicentrotus pulcherrimus.
Dev. Biol
127
,
187
196
Kozlowski
D. J.
,
Gagnon
M. L.
,
Marchant
J. K.
,
Reynolds
S. D.
,
Angerer
L. M.
,
Angerer
R. C.
(
1996
)
Characterization of a SpAN promoter sufficient to mediate correct spatial regulation along the animal-vegetal axis of the sea urchin embryo.
Dev. Biol
176
,
95
107
Kuraishi
R.
,
Osanai
K.
(
1994
)
Contribution of maternal factors and cellular interaction to determination of archenteron in the starfish embryo.
Development
120
,
2619
2628
Lee
J. J.
,
Calzone
F. J.
,
Davidson
E. H.
(
1992
)
Modulation of sea urchin actin mRNA prevalence during embryogenesis: Nuclear synthesis and decay rate measurements of transcripts from five different genes.
Dev. Biol
149
,
415
431
Lepage
T.
,
Gache
C.
(
1990
)
Early expression of a collagenase-like hatching enzyme gene in the sea urchin embryo.
EMBO J
9
,
3003
3012
Lepage
T.
,
Ghiglione
C.
,
Gache
C.
(
1992
)
Spatial and temporal expression pattern during sea urchin embryogenesis of a gene coding for a protease homologous to the human protein BMP-1 and to the product of the Drosophila dorsal-ventral patterning gene tolloid.
Development
114
,
147
164
Lepage
T.
,
Sardet
C.
,
Gache
C.
(
1992
)
Spatial expression of the hatching enzyme gene in the sea urchin embryo.
Dev. Biol
150
,
23
32
Li
X.
,
Chuang
C. K.
,
Mao
C. A.
,
Angerer
L. M.
,
Klein
W. H.
(
1997
)
Two Otx proteins generated from multiple transcripts of a single gene in Strongylocentrotus purpuratus.
Dev. Biol
187
,
253
266
Lin
R.
,
Thompson
S.
,
Priess
J. R.
(
1995
)
pop-1 encodes an HMG box protein required for the specification of a mesoderm precursor in early C. elegans embryos.
Cell
83
,
599
609
Littlewood
D. T. J.
,
Smith
A. B.
,
Clough
K. A.
,
Emson
R. H.
(
1997
)
The interrelationships of the echinoderm classes: Morphological and molecular evidence.
Biol. J. Linnean Soc
61
,
409
438
Livingston
B. T.
,
Wilt
F. H.
(
1989
)
Lithium evokes expression of vegetal-specific molecules in the animal blastomeres of sea urchin embryos.
Proc. Natl. Acad. Sci. USA
86
,
3669
3673
Livingston
B. T.
,
Wilt
F. H.
(
1990
)
Range and stability of cell fate determination in isolated sea urchin blastomeres.
Development
108
,
403
410
Livingston
B. T.
,
Shaw
R.
,
Bailey
A.
,
Wilt
F.
(
1991
)
Characterization of cDNA encoding a protein involved in formation of the skeleton during development of the sea urchin Lytechinus pictus.
Dev. Biol
148
,
473
480
Logan
C. Y.
,
McClay
D. R.
(
1997
)
The allocation of early blastomeres to the ectoderm and endoderm is variable in the sea urchin embryo.
Development
124
,
2213
2223
Lowe
C. J.
,
Wray
G. A.
(
1997
)
Radical alterations in the roles of homeobox genes during echinoderm evolution.
Nature
389
,
718
721
Luke
N. H.
,
Killian
C. E.
,
Livingston
B. T.
(
1997
)
Spfkh1 encodes a transcription factor implicated in gut formation during sea urchin development.
Develop. Growth Differ
39
,
285
294
MacBride
E. W.
(
1903
)
The development of Echinus esculentus, together with some points on the development of E. miliaris and E. acutus.
Phil. Trans. Roy. Soc
195
,
285
330
Makabe
K. W.
,
Kirchhamer
C. V.
,
Britten
R. J.
,
Davidson
E. H.
(
1995
)
Cis -regulatory control of the SM50 gene, an early marker of skeletogenic lineage specification in the sea urchin embryo.
Development
121
,
1957
1970
Mao
C. A.
,
Wikramanayake
A. H.
,
Gan
L.
,
Chuang
C. K.
,
Summers
R. G.
,
Klein
W. H.
(
1996
)
Altering cell fates in sea urchin embryos by overexpressing SpOtx, a orthodenticle-related protein.
Development
122
,
1489
1498
Martinez
P.
,
Davidson
E. H.
(
1997
)
SpHmx, a sea urchin homeobox gene expressed in embryonic pigment cells.
Dev. Biol
181
,
213
222
Martinez
P.
,
Lee
J.
,
Davidson
E. H.
(
1997
)
Complete sequence of SpHox8 and its linkage in the single Hox gene cluster of Strongylocentrotus purpuratus.
J. Mol. Evol
44
,
371
377
McClay
D. R.
,
Logan
C. Y.
(
1996
)
Regulative capacity of the archenteron during gastrulation in the sea urchin.
Development
122
,
607
616
McClay
D. R.
,
Armstrong
N. A.
,
Hardin
J.
(
1992
)
Pattern formation during gastrulation in the sea urchin embryo.
Development
1992
,
33
41
Mello
C. C.
,
Draper
B. W.
,
Priess
J. R.
(
1994
)
The maternal genes apx-1 and glp-1 and establishment of dorsal-ventral polarity in the early C. elegans embryo.
Cell
77
,
95
106
Miller
J. R.
,
Moon
R. T.
(
1996
)
Signal transduction through-catenin and specification of cell fate during embryogenesis.
Genes Dev
10
,
2527
2539
Miller
R. N.
,
Dalamagas
D. G.
,
Kingsley
P. D.
,
Ettensohn
C. A.
(
1996
)
Expression of S9 and actin CyIIa mRNAs reveals dorso-ventralpolarity mesodermal sublineages in the vegetal plate of the sea urchin embryo.
Mech. Dev
60
,
3
12
Montminy
M.
(
1997
)
Transcriptional regulation by cyclic AMP.
Ann. Rev. Biochem
66
,
807
822
Moskowitz
I. P. G.
,
Gendreau
S. B.
,
Rothman
J. H.
(
1994
)
Combinatorial specification of blastomere identity by glp-1 -dependent cellular interactions in the nematode Caenorhabditis elegans.
Development
120
,
3325
3338
Nasir
A.
,
Reynolds
S. D.
,
Angerer
L. M.
,
Angerer
R. C.
(
1995
)
VEB4: Early zygotic mRNA expressed asymmetrically along the animal-vegetal axis of the sea urchin embryo.
Develop. Growth Differ
37
,
57
68
Nocente-McGrath
C.
,
Brenner
C. A.
,
Ernst
S. G.
(
1989
)
Endo16, a lineage-specific protein of the sea urchin embryo, is first expressed just prior to gastrulation.
Dev. Biol
136
,
264
272
Nocente-McGrath
C.
,
McIsaac
R.
,
Ernst
S. G.
(
1991
)
Altered cell fate in LiCl-treated sea urchin embryos.
Dev. Biol
147
,
445
450
Okazaki
K.
(
1975
)
Spicule formation by isolated micromeres of the sea urchin embryo.
Am. Zool
15
,
567
–.
Pehrson
J. R.
,
Cohen
L. H.
(
1986
)
The fate of the small micromeres in sea urchin development.
Dev. Biol
113
,
522
526
Peterson
K. J.
,
Cameron
R. A.
,
Davidson
E. H.
(
1997
)
Set-aside cells in maximal indirect development: Evolutionary and developmental significance.
BioEssays
19
,
623
631
Ransick
A.
,
Davidson
E. H.
(
1993
)
A complete second gut induced by transplanted micromeres in the sea urchin embryo.
Science
259
,
1134
1138
Ransick
A.
,
Ernst
S.
,
Britten
R. J.
,
Davidson
E. H.
(
1993
)
Whole mount in situ hybridization shows Endo-16 to be a marker for the vegetal plate territory in sea urchin embryos.
Mech. Dev
42
,
117
124
Ransick
A.
,
Davidson
E. H.
(
1995
)
Micromeres are required for normal vegetal plate specification in sea urchin embryos.
Development
121
,
3215
3222
Ransick
A.
,
Davidson
E. H.
(
1998
)
Late specification of veg1lineages to endodermal fate in the sea urchin embryo.
Dev. Biol
195
,
38
48
Ransick
A.
,
Cameron
R. A.
,
Davidson
E. H.
(
1996
)
Post-embryonic segregation of the germ line in sea urchins, in relation to indirect development.
Proc. Natl. Acad. Sci. USA
93
,
6759
6763
Reynolds
S. D.
,
Angerer
L. M.
,
Palis
J.
,
Nasir
A.
,
Angerer
R. C.
(
1992
)
Early mRNAs, spatially restricted along the animal-vegetal axis of sea urchin embryos, include one encoding a protein related to tolloid and BMP-1.
Development
114
,
769
786
Rocheleau
C. E.
,
Downs
W. D.
,
Lin
R.
,
Wittmann
C.
,
Bei
Y.
,
Cha
Y. H.
,
Ali
M.
,
Priess
J. R.
,
Cello
C. C.
(
1997
)
Wnt signaling and an APC-related gene specify endoderm in early C. elegans embryos.
Cell
90
,
707
716
Ruffins
S. W.
,
Ettensohn
C. A.
(
1993
)
A clonal analysis of secondary mesenchyme cell fates in the sea urchin embryo.
Dev. Biol
160
,
285
288
Ruffins
S. W.
,
Ettensohn
C. A.
(
1996
)
A fate map of the vegetal plate of the sea urchin (Lytechinus variegatus) mesenchyme blastula.
Development
122
,
253
263
Schroeder
T. E.
(
1980
)
Expressions of the prefertilization polar axis in sea urchin eggs.
Dev. Biol
79
,
428
443
Schroeder
T. E.
(
1980
)
The jelly canal: Marker of polarity for sea urchin oocytes, eggs, and embryos.
Exp. Cell Res
128
,
490
494
Sherwood
D. R.
,
McClay
D. R.
(
1997
)
Identification and localization of sea urchin Notch homoloque: Insights into vegetal plate regionalization and Notch receptor regulation.
Development
124
,
3363
3374
Smith
L. C.
,
Harrington
M. G.
,
Britten
R. J.
,
Davidson
E. H.
(
1994
)
The sea urchin profilin gene is specifically expressed in mesenchyme cells during gastrulation.
Dev. Biol
164
,
463
474
Smith
M. J.
,
Arndt
A.
,
Gorski
S.
,
Fajber
E.
(
1993
)
The phylogeny of echinoderm classes based on mitochondrial gene arrangements.
J. Mol. Evol
36
,
545
554
Stephens
L.
,
Kitajima
T.
,
Wilt
F.
(
1989
)
Autonomous expression of tissue-specific genes in dissociated sea urchin embryos.
Development
107
,
299
307
Sucov
H. M.
,
Benson
S.
,
Robinson
J. J.
,
Britten
R. J.
,
Wilt
F.
,
Davidson
E. H.
(
1987
)
A lineage-specific gene encoding a major matrix protein of the sea urchin embryo spicule. II. Structure of the gene and derived sequence of the protein.
Dev. Biol
120
,
507
519
Sucov
H. M.
,
Hough-Evans
B. R.
,
Franks
R. R.
,
Britten
R. J.
,
Davidson
E. H.
(
1988
)
A regulatory domain that directs lineage-specific expression of a skeletal matrix protein gene in the sea urchin embryo.
Genes Dev
2
,
1238
1250
Summers
R. G.
,
Piston
D. W.
,
Harris
K. M.
,
Morrill
J. B.
(
1996
)
The orientation of first cleavage in the sea urchin embryo, Lytechinus variegatus, does not specify the axes of bilateral symmetry.
Dev. Biol
175
,
177
183
Tamboline
C. R.
,
Burke
R. D.
(
1989
)
Ontogeny and characterization of mesenchyme antigens of the sea urchin embryo.
Dev. Biol
136
,
75
86
Tamboline
C. R.
,
Burke
R. D.
(
1992
)
Secondary mesenchyme of the sea urchin embryo: Ontogeny of blastocoelar cells.
J. Exp. Zool
262
,
51
60
Tanaka
Y.
(
1976
)
Effects of surfactants on the cleavage and further development of the sea urchin embryos. I. The inhibition of micromere formation at the fourth cleavage.
Dev. Growth Differ
18
,
113
118
Thorpe
C. J.
,
Schlesinger
A.
,
Carter
J. C.
,
Bowerman
B.
(
1997
)
Wnt signaling polarizes an early C. elegans blastomere to distinguish endoderm from mesoderm.
Cell
90
,
695
705
Venuti
J. M.
,
Goldberg
L.
,
Chakraborty
T.
,
Olson
E. N.
,
Klein
W. H.
(
1991
)
A myogenic factor from sea urchin embryos capable of programming muscle differentiation in mammalian cells.
Proc. Natl. Acad. Sci. USA
88
,
6219
6223
Vlahou
A.
,
Gonzalez-Rimbau
M.
,
Flytzanis
C.
(
1996
)
Maternal mRNA encoding the orphan steroid receptor SpCOUP-TF is localized in sea urchin eggs.
Development
122
,
521
526
Wang
D. G.-W.
,
Kirchhamer
C. V.
,
Britten
R. J.
,
Davidson
E. H.
(
1995
)
SpZ12-1, a negative regulator required for spatial control of the territory-specific CyIIIa gene in the sea urchin embryo.
Development
121
,
1111
1122
Wang
W.
,
Wikramanayake
A. H.
,
Gonzalez-Rimbau
M.
,
Vlaahou
A.
,
Flytzanis
C. N.
,
Klein
W. H.
(
1996
)
Very early and transient vegetal-plate expression of SpKrox1, a Krupple/Krox gene from Strongylocentrotus purpuratus.
Mech. Dev
60
,
185
195
Wei
Z.
,
Angerer
L. M.
,
Gagnon
M. L.
,
Angerer
R. C.
(
1995
)
Characterization of the SpHE promoter that is spatially regulated along the animal-vegetal axis of the sea urchin embryo.
Dev. Biol
171
,
195
211
Wei
Z.
,
Angerer
L. M.
,
Angerer
R. C.
(
1997
)
Multiple positive cis elements regulate the asymmetric expression of the SpHE gene along the sea urchin embryo animal-vegetal axis.
Dev. Biol
187
,
71
78
Wei
Z.
,
Kenny
A. P.
,
Angerer
L. M.
,
Angerer
R. C.
(
1997
)
The SpHE gene is downregulated in sea urchin late blastula despite persistence of multiple positive factors sufficient to activate its promoter.
Mech. Dev
67
,
171
178
Wikramanayake
A. H.
,
Brandhorst
B. P.
,
Klein
W. H.
(
1995
)
Autonomous and non-autonomous differentiation of ectoderm in different sea urchin species.
Development
121
,
1497
1505
Wilt
F. H.
(
1987
)
Determination and morphogenesis in the sea urchin embryo.
Development
100
,
559
575
Wray
G. A.
,
McClay
D. R.
(
1989
)
Molecular heterochronies and heterotopies in early echinoid development.
Evolution
43
,
803
813
Yang
Q.
,
Kingsley
P. D.
,
Kozlowski
D. J.
,
Angerer
R. C.
,
Angerer
L. M.
(
1993
)
Immunochemical analysis of arylsulfatase accumulation in sea urchin embryos.
Develop. Growth Differ
35
,
139
151
Yuh
C.-H.
,
Davidson
E. H.
(
1996
)
Modular cis -regulatory organization of Endo16, a gut-specific gene of the sea urchin embryo.
Development
122
,
1069
1082
Yuh
C.-H.
,
Moore
J. G.
,
Davidson
E. H.
(
1996
)
Quantitative functional interrelations within the cis -regulatory system of the S. purpuratus Endo16 gene.
Development
122
,
4045
4056
Zeller
R. W.
,
Britten
R. J.
,
Davidson
E. H.
(
1995
)
Developmental utilization of SpP3A1 and SpP3A2: Two proteins which recognize the same DNA target site in several sea urchin gene regulatory regions.
Dev. Biol
170
,
75
82
Zeller
R. W.
,
Coffman
J. A.
,
Harrington
M. G.
,
Britten
R. J.
,
Davidson
E. H.
(
1995
)
SpGCF1, a sea urchin embryo transcription factor, exists as five nested variants encoded by a single mRNA.
Dev. Biol
169
,
713
727
This content is only available via PDF.