The mammalian Pax2, Pax5 and Pax8 genes code for highly related transcription factors, which play important roles in embryonic development and organogenesis. Here we report the characterization of all members of the zebrafish Pax2/5/8 family. These genes have arisen by duplications before or at the onset of vertebrate evolution. Due to an additional genome amplification in the fish lineage, the zebrafish contains two Pax2 genes, the previously known Pax[b] gene (here renamed as Pax2.1) and a novel Pax2.2 gene. The zebrafish Pax2.1 gene most closely resembles the mammalian Pax2 gene in its expression pattern, as it is transcribed first in the midbrain-hindbrain boundary region, then in the optic stalk, otic system, pronephros and nephric ducts, and lastly in specific interneurons of the hindbrain and spinal cord. Pax2.2 differs from Pax2.1 by the absence of expression in the nephric system and by a delayed onset of transcription in other Pax2.1 expession domains. Pax8 is also expressed in the same domains as Pax2.1, but its transcription is already initiated during gastrulation in the primordia of the otic placode and pronephric anlage, thus identifying Pax8 as the earliest developmental marker of these structures. The zebrafish Pax5 gene, in contrast to its mouse orthologue, is transcribed in the otic system in addition to its prominent expression at the midbrain-hindbrain boundary. The no isthmus (noi) mutation is known to inactivate the Pax2.1 gene, thereby affecting the development of the midbrain-hindbrain boundary region, pronephric system, optic stalk and otic region. Although the different members of the Pax2/5/8 family may potentially compensate for the loss of Pax2.1 function, we demonstrate here that only the expression of the Pax2.2 gene remains unaffected in noi mutant embryos. The expression of Pax5 and Pax8 is either not initiated at the midbrain-hindbrain boundary or is later not maintained in other expression domains. Consequently, the noi mutation of zebrafish is equivalent to combined inactivation of the mouse Pax2 and Pax5 genes with regard to the loss of midbrain-hindbrain boundary development.

REFERENCES

Adams
B.
,
Dörfler
P.
,
Aguzzi
A.
,
Kozmik
Z.
,
Urbánek
P.
,
Maurer-Fogy
I.
,
Busslinger
M.
(
1992
)
Pax-5 encodes the transcription factor BSAP and is expressed in B lymphocytes, the developing CNS, and adult testis.
Genes Dev
6
,
1589
1607
Asano
M.
,
Gruss
P.
(
1992
)
Pax-5 is expressed at the midbrain-hindbrain boundary during mouse development.
Mech. Dev
39
,
29
39
Brand
M.
,
Heisenberg
C.-P.
,
Jiang
Y.-P.
,
Beuchle
D.
,
Lun
K.
,
Furutani-Seiki
M.
,
Granato
M.
,
Haffter
P.
,
Hammerschmidt
M.
,
Kane
D.
, et al. 
(
1996
)
Mutations in zebrafish genes affecting the formation of the boundary between midbrain and hindbrain.
Development
123
,
179
190
Busslinger
M.
,
Klix
N.
,
Pfeffer
P.
,
Graninger
P. G.
,
Kozmik
Z.
(
1996
)
Deregulation of PAX-5 by translocation of the Eenhancer of the IgH locus adjacent to two alternative PAX-5 promoters in a diffuse large-cell lymphoma.
Proc. Nat. Acad. Sci. USA
93
,
6129
6134
Czerny
T.
,
Bouchard
M.
,
Kozmik
Z.
,
Busslinger
M.
(
1997
)
The characterization of novel Pax genes of the sea urchin and Drosophila reveal an ancient evolutionary origin of the Pax2/5/8 family.
Mech. Dev
67
,
179
192
Czerny
T.
,
Schaffner
G.
,
Busslinger
M.
(
1993
)
DNA sequence recognition by Pax proteins: bipartite structure of the paired domain and its binding site.
Genes Dev
7
,
2048
2061
Dörfler
P.
,
Busslinger
M.
(
1996
)
C-terminal activating and inhibitory domains determine the transactivation potential of BSAP (Pax-5), Pax-2 and Pax-8.
EMBO J
15
,
1971
1982
Dressler
G. R.
,
Deutsch
U.
,
Chowdhury
K.
,
Nornes
H. O.
,
Gruss
P.
(
1990
)
Pax2, a new murine paired-box-containing gene and its expression in the developing excretory system.
Development
109
,
787
795
Ekker
M.
,
Wegner
J.
,
Akimenko
M. A.
,
Westerfield
M.
(
1992
)
Coordinate embryonic expression of three zebrafish engrailed genes.
Development
116
,
1001
1010
Favor
J.
, et al. 
(
1996
)
The mouse Pax2 1Neumutation is identical to a human PAX2 mutation in a family with renal-coloboma syndrome and results in developmental defects of the brain, ear, eye, and kidney.
Proc. Nat. Acad. Sci. USA
93
,
13870
13875
Fu
W.
,
Noll
M.
(
1997
)
The Pax2 homolog sparkling is required for development of cone and pigment cells in the Drosophila eye.
Genes Dev
11
,
2066
2078
Hauptmann
G.
,
Gerster
T.
(
1994
)
Two-color whole-mount i n situ hybridization to vertebrate and Drosophila embryos.
Trends Genet
10
,
266
–.
Heller
N.
,
Brändli
A. W.
(
1997
)
Xenopus Pax-2 displays multiple splice forms during embryogenesis and pronephric kidney development.
Mech. Dev
69
,
83
104
Kelly
G. M.
,
Greenstein
P.
,
Erezyilmaz
D. F.
,
Moon
R. T.
(
1995
)
Zebrafish wnt8 and wnt8b share a common activity but are involved in distinct developmental pathways.
Development
121
,
1787
1799
Kelly
G. M.
,
Moon
R. T.
(
1995
)
Involvement of Wnt1 and Pax2 in the formation of the midbrain-hindbrain boundary in the zebrafish gastrula.
Dev. Genet
17
,
129
140
Kimmel
C. B.
,
Ballard
W. W.
,
Kimmel
S. R.
,
Ullmann
B.
,
Schilling
T. F.
(
1995
)
Stages of embryonic development of the zebrafish.
Dev. Dyn
203
,
253
310
Kozmik
Z.
,
Kurzbauer
R.
,
Dörfler
P.
,
Busslinger
M.
(
1993
)
Alternative splicing of Pax-8 gene transcripts is developmentally regulated and generates isoforms with different transactivation properties.
Mol. Cell. Biol
13
,
6024
6035
Krauss
S.
,
Johansen
T.
,
Korzh
V.
,
Fjose
A.
(
1991
)
Expression of the zebrafish paired box gene pax[zf-b] during early neurogenesis.
Development
113
,
1193
1206
Krauss
S.
,
Maden
M.
,
Holder
N.
,
Wilson
S. W.
(
1992
)
Zebrafish pax [b] is involved in the formation of the midbrain-hindbrain boundary.
Nature
360
,
87
89
Lun
K.
,
Brand
M.
(
1998
).
A series of zebrafish no isthmus alleles of the pax2.1 gene reveals multiple signaling events in development of the midbrain-hindbrain primordium.
Development
125
,
3049
3062
Macdonald
R.
,
Scholes
J.
,
Strähle
U.
,
Brennan
C.
,
Holder
N.
,
Brand
M.
,
Wilson
S. W.
(
1997
)
The Pax protein Noi is required for commissural axon pathway formation in the rostral forebrain.
Development
124
,
2397
2408
Mansouri
A.
,
Chowdhury
K.
,
Gruss
P.
(
1998
)
Follicular cells of the thyroid gland require Pax8 gene function.
Nature Genet
19
,
87
90
Mikkola
I.
,
Fjose
A.
,
Kuwada
J. Y.
,
Wilson
S.
,
Guddal
P. H.
,
Krauss
S.
(
1992
)
The paired domain-containing nuclear factor pax [b] is expressed in specific commissural interneurons in zebrafish embryos.
J. Neurobiol
23
,
933
946
Nornes
H. O.
,
Dressler
G. R.
,
Knapik
E. W.
,
Deutsch
U.
,
Gruss
P.
(
1990
)
Spatially and temporally restricted expression of Pax2 during murine neurogenesis.
Development
109
,
797
809
Nutt
S. L.
,
Urbánek
P.
,
Rolink
A.
,
Busslinger
M.
(
1997
)
Essential functions of Pax5 (BSAP) in pro-B cell development: difference between fetal and adult B lymphopoiesis and reduced V -to -DJ recombination at the IgH locus.
Genes Dev
11
,
476
491
Plachov
D.
,
Chowdhury
K.
,
Walther
C.
,
Simon
D.
,
Guenet
J. L.
,
Gruss
P.
(
1990
)
Pax8, a murine paired box gene expressed in the developing excretory system and thyroid gland.
Development
110
,
643
651
Postlethwait
J. H.
, et al. 
(
1998
)
Vertebrate genome evolution and the zebrafish gene map.
Nature Genet
18
,
345
349
Puschel
A. W.
,
Westerfield
M.
,
Dressler
G. R.
(
1992
)
Comparative analysis of Pax-2 protein distributions during neurulation in mice and zebrafish.
Mech. Dev
38
,
197
208
Rowitch
D. H.
,
McMahon
A. P.
(
1995
)
Pax-2 expression in the murine neural plate precedes and encompasses the expression domains of Wnt-1 and En-1.
Mech. Dev
52
,
3
8
Sanyanusin
P.
,
Schimmenti
L. A.
,
McNoe
L. A.
,
Ward
T. A.
,
Pierpont
M. E. M.
,
Sullivan
M. J.
,
Dobyns
W. B.
,
Eccles
M. R.
(
1995
)
Mutation of the PAX2 gene in a family with optic nerve colombomas, renal anomalies and vesicoureteral reflux.
Nature Genet
9
,
358
364
Schwarz
M.
,
Alvarez-Bolado
G.
,
Urbánek
P.
,
Busslinger
M.
,
Gruss
P.
(
1997
)
Conserved biological function between Pax-2 and Pax-5 in midbrain and cerebellum development: Evidence from targeted mutation.
Proc. Nat. Acad. Sci. USA
94
,
14518
14523
Song
D.-L.
,
Chalepakis
G.
,
Gruss
P.
,
Joyner
A. L.
(
1996
)
Two Pax-binding sites are required for early embryonic brain expression of an Engrailed-2 transgene.
Development
122
,
627
635
Stuart
E. T.
,
Kioussi
C.
,
Gruss
P.
(
1994
)
Mammalian PAX genes.
Annu. Rev. Genet
28
,
219
236
Torres
M.
,
Gomez-Pardo
E.
,
Dressler
G. R.
,
Gruss
P.
(
1995
)
Pax-2 controls multiple steps of urogenital development.
Development
121
,
4057
4065
Torres
M.
,
Gomez-Pardo
E.
,
Gruss
P.
(
1996
)
Pax2 contributes to inner ear patterning and optic nerve trajectory.
Development
122
,
3381
3391
Urbánek
P.
,
Fetka
I.
,
Meisler
M. H.
,
Busslinger
M.
(
1997
)
Cooperation of Pax2 and Pax5 in midbrain and cerebellum development.
Proc. Nat. Acad. Sci. USA
94
,
5703
5708
Urbánek
P.
,
Wang
Z.-Q.
,
Fetka
I.
,
Wagner
E. F.
,
Busslinger
M.
(
1994
)
Complete block of early B cell differentiation and altered patterning of the posterior midbrain in mice lacking Pax5/BSAP.
Cell
79
,
901
912
This content is only available via PDF.