The myogenic basic helix-loop-helix (bHLH) genes - MyoD, Myf5, myogenin and MRF4 - exhibit distinct, but overlapping expression patterns during development of the skeletal muscle lineage and loss-of-function mutations in these genes result in different effects on muscle development. MyoD and Myf5 have been shown to act early in the myogenic lineage to establish myoblast identity, whereas myogenin acts later to control myoblast differentiation. In mice lacking myogenin, there is a severe deficiency of skeletal muscle, but some residual muscle fibers are present in mutant mice at birth. Mice lacking MRF4 are viable and have skeletal muscle, but they upregulate myogenin expression, which could potentially compensate for the absence of MRF4. Previous studies in which Myf5 and MRF4 null mutations were combined suggested that these genes do not share overlapping myogenic functions in vivo. To determine whether the functions of MRF4 might overlap with those of myogenin or MyoD, we generated double mutant mice lacking MRF4 and either myogenin or MyoD. MRF4/myogenin double mutant mice contained a comparable number of residual muscle fibers to mice lacking myogenin alone and myoblasts from those double mutant mice formed differentiated multinucleated myotubes in vitro as efficiently as wild-type myoblasts, indicating that neither myogenin nor MRF4 is absolutely essential for myoblast differentiation. Whereas mice lacking either MRF4 or MyoD were viable and did not show defects in muscle development, MRF4/MyoD double mutants displayed a severe muscle deficiency similar to that in myogenin mutants. Myogenin was expressed in MRF4/MyoD double mutants, indicating that myogenin is insufficient to support normal myogenesis in vivo. These results reveal unanticipated compensatory roles for MRF4 and MyoD in the muscle differentiation pathway and suggest that a threshold level of myogenic bHLH factors is required to activate muscle structural genes, with this level normally being achieved by combinations of multiple myogenic bHLH factors.

REFERENCES

Bober
E.
,
Lyons
G. E.
,
Braun
T.
,
Cossu
G.
,
Buckingham
M.
,
Arnold
H. H.
(
1991
)
The muscle regulatory gene, Myf-6, has a biphasic pattern of expression during early mouse development.
J.)(Cell Biol
113
,
1255
1265
Braun
T.
,
Arnold
H. H.
(
1995
)
Inactivation of Myf −6 and Myf −5 genes in mice leads to alterations in skeletal muscle development.
EMBOJ
14
,
1176
1186
Braun
T.
,
Bober
E.
,
Rudnicki
M. A.
,
Jaenisch
R.
,
Arnold
H. H.
(
1994
)
MyoD expression marks the onset of skeletal myogenesis in Myf-5 mutant mice.
Development
120
,
3083
3092
Braun
T.
,
Rudnicki
M. A.
,
Arnold
H. H.
,
Jaenisch
R.
(
1992
)
Targeted inacti)(va)(tion of the muscle regulatory gene Myf-5 results in abnormal rib development and perinatal death.
Cell
71
,
369
–.
Brennan
T. J.
,
Edmondson
D. G.
,
Olson
E. N.
(
1990
)
Aberrant regulation of MyoD1 contributes to the partially defective myogenic phenotype of BC3H1 cells.
J. Cell Biol
110
,
929
938
Chakraborty
T.
,
Olson
E. N.
(
1991
)
Domains outside of the DNA-binding domain impart target gene specificity to myogenin and MRF4.
Mol. Cell. Biol
11
,
6103
6108
Edmondson
D. G.
,
Cheng
T.-C.
,
Cserjesi
P.
,
Chakraborty
T.
,
Olson
E. N.
(
1992
)
Analysis of the myogenin promoter reve)(als an indirect pathway for positive autoregulation mediated by the muscle-specific enhancer factor MEF-2.
Mol. Cell. Biol
12
,
3665
3677
Edmondson
D. G.
,
Olson
E. N.
(
1989
)
A gene with homology to the myc similarity region of MyoD1 is expressed during myogenesis and is sufficient to activate the muscle differentiation program.
Genes Dev
3
,
628
640
Floss
T.
,
Arnold
H. H.
,
Braun
T.
(
1996
)
Myf5(ml)IMyf6(rnl) compound heterozygous mouse mutants down-regulate myf-5 expression and exert rib defects: evidence for long-range cis effects on myf-5 transcription.
Dev. Biol
174
,
140
147
Grass
S.
,
Arnold
H.-H.
,
Braun
T.
(
1996
)
Alterations in somite patterning of Myf-5-deficient mice: a possible role for FGF-4 and FGF-6.
Development
122
,
141
150
Hasty
P.
,
Bradley
A.
,
Morris
J. H.
,
Edmondson
D. E.
,
Venuti
J. M.
,
Olson
E. N.
,
Klein
W. H.
(
1993
)
Muscle deficiency and neonatal death in mice with a targeted mutation in the myogenin gene.
Nature
364
,
501
506
Hannon
K.
,
Smith
C. K.
,
Bales
K. R.
,
Santerre
R. F.
(
1992
)
Temporal and quantitative analysis of myogenic regulatory and growth factor gene expression in the developing mouse embryo.
Dev. Biol
151
,
137
144
Hinterberger
T. J.
,
Sassoon
D. A.
,
Rhodes
S. J.
,
Konieczny
S. F.
(
1991
)
Expression of the muscle regulatory factor MRF4 during somite and skeletal myofiber development.
Dev. Biol
147
,
144
156
Hollenberg
S. M.
,
Cheng
P. F.
,
Weintraub
H.
(
1993
)
Use of a conditional MyoD transcription factor in studies of MyoD transacti)(vation and muscle determination.
Proc. Natl. Acad. Sci. USA
90
,
8028
8032
Ludolf
D. C.
,
Konieczny
S. F.
(
1995
)
Transcription factor families: muscling in on the myogenic program.
FA)(SEB J
9
,
1595
1604
McLeod
M. J.
(
1980
)
Differential staining of cartilage and bone in whole mouse fetuses by alcian blue and alizarin red.
Teratology
22
,
299
301
McPherron
A. C.
,
Lawler
A. M.
,
Lee
S.-J.
(
1997
)
Regulation of skeletal muscle mass in mice by a new TGF-superfamily member.
Nature
387
,
83
90
Molkentin
J. D.
,
Olson
E. N.
(
1996
)
Defining the regulatory networks for muscle development.
Curr.)(Opin. Genet. Dev
6
,
445
453
Munsterberg
A. E.
,
Lassar
A. B.
(
1995
)
Combinatorial signals from the neural tube, floor plate and notochord induce myogenic bHLH gene expression in the somite.
Development
121
,
651
660
Nabeshima
Y. K.
,
Hanaoka
K.
,
Hayasaka
M.
,
Esumi
S.
,
Li
S.
,
Nonaka
I.
(
1993
)
Myogenin gene disruption results in perinatal lethality because of severe muscle defect.
Nature
364
,
532
535
Olson
E. N.
(
1993
)
Signal transduction pathways that regulate skeletal muscle gene expression.
Mol. Endocrinol
7
,
1369
1378
Ott
M.-O.
,
Bober
E.
,
Lyons
G. E.
,
Arnold
H. H.
,
Buckingham
M.
(
1991
)
Early expression of the myogenic regulatory gene, myf5 in precursor cells of skeletal muscle in the mouse embryo.
Development
11
,
1097
1107
Patapoutian
A.
,
Yoon
K.
,
Miner
H.
,
Wang
S.
,
Stark
K.
,
Wold
B.
(
1995
)
Disruption of the mouse MRF4 gene identifies multiple waves of myogenesis in the myotome.
Development
121
,
3347
3358
Patapoutian
A.
,
Miner
H.
,
Lyons
G. E.
,
Wold
B.
(
1993
)
Isolated sequences from the linked Myf-5 and MRF4 genes drive distinct patterns of muscle-specific expression in transgenic mice.
Development
118
,
61
69
Rawls
A.
,
Morris
J. H.
,
Rudnicki
M.
,
Braun
T.
,
Arnold
H. H.
,
Klein
W. H.
,
Olson
E. N.
(
1995
)
Myogenins' functions do not overlap with those of MyoD or Myf-5 during mouse embryogenesis.
Dev. Biol
172
,
37
50
Rhodes
S. J.
,
Konieczny
S. F.
(
1989
)
Identification of MRF4: A new member of the muscle regulatory factor gene family.
Genes Dev
3
,
2050
2061
Rudnicki
M. A.
,
Jaenisch
R.
(
1995
)
The MyoD family of transcription factors and skeletal myogenesis.
BioEssays
17
,
203
209
Rudnicki
M. A.
,
Schnegelsberg
P. N. J.
,
Stead
R. H.
,
Braun
T.
,
Arnold
H. H.
,
Jaenisch
R.
(
1993
)
MyoD or Myf-5 is required for the formation of skeletal muscle.
Cell
75
,
1351
1359
Rudnicki
M. A.
,
Braun
T.
,
Hinuma
S.
,
Jaenisch
R.
(
1992
)
Inactivation of MyoD in mice leads to up-regulation of the myogenic bHLH gene Myf-5 and results in apparently normal muscle development.
Cell
71
,
383
390
Sassoon
D. A.
,
Lyons
G. E.
,
Wright
W. E.
,
Lin
V. K.
,
Lassar
A. B.
,
Weintraub
H.
,
Buckingham
M.
(
1989
)
Expression of two myogenicregulatory factors myogenin and MyoD1 during mouse embryogenesis.
Nature
341
,
303
307
Stern
H. M.
,
Lin-Jones
J.
,
Hauschka
S. D.
(
1997
)
Synergistic interactions between bFGF and a TGF-beta family members may mediate myogenic signals from the neural tube.
Development
124
,
3511
3523
Venuti
J. M.
,
Morris
J. S.
,
Vivian
J. L.
,
Olson
E. N.
,
Klein
W. H.
(
1995
)
Myogenin is required for late but not early aspects of myogenesis during mouse development.
J. Cell Biol
128
,
563
576
Wang
Y.
,
Schnegelsberg
P.
,
Dausman
J.
,
Jaenisch
R.
(
1996
)
Functional redundancy of the muscle-specific transcription factors Myf5 and myogenin.
Nature
379
,
823
825
Wang
Y.
,
Jaenisch
R.
(
1997
)
Myogenin can substitute for Myf5 in promoting myogenesis but less efficiently.
Development
124
,
2510
2513
Yoon
J. K.
,
Olson
E. N.
,
Arnold
H.-H.
,
Wold
B. J.
(
1997
)
Different MRF4 knockout alleles differentially disrupt Myf-5 expression: Cis -regulatory interactions at the MRF4/Myf-5 locus.
Dev. Biol
188
,
349
362
Yun
K. S.
,
Wold
B. J.
(
1996
)
Skeletal muscle determination and differentiation: Story of a core regulatory network and its context.
Curr. Opin. Cell Biol
8
,
877
889
Yutzey
K. E.
,
Rhodes
S. J.
,
Konieczny
S. F.
(
1990
)
Differential trans-activation associated with the muscle regulatory factors MyoD1, myogenin and MRF4.
Mol. Cell. Biol
10
,
3934
3944
Zhang
W.
,
Behringer
R. R.
,
Olson
E. N.
(
1995
)
Inactivation of the myogenic bHLH gene MRF4 results in up-regulation of myogenin and rib anomalies.
Genes Dev
9
,
1388
1399
Zhu
Z.
,
Miller
J. B.
(
1997
)
MRF4 can substitute for myogenin during early stages of myogenesis.
Dev. Dyn
209
,
233
241
Zweigerdt
R.
,
Braun
T.
,
Arnold
H.-H.
(
1997
)
Faithful expression of the Myf-5 gene during mouse myogenesis requires distant control regions: A transgene approach using yeast artificial chromosomes.
Dev. Biol
191
,
172
180
This content is only available via PDF.