Morphogenesis transforms the C. elegans embryo from a ball of cells into a vermiform larva. During this transformation, the embryo increases fourfold in length; present data indicates this elongation results from contraction of the epidermal actin cytoskeleton. In sma-1 mutants, the extent of embryonic elongation is decreased and the resulting sma-1 larvae, although viable, are shorter than normal. We find that sma-1 mutants elongate for the same length of time as wild-type embryos, but at a decreased rate. The sma-1 mutants we have isolated vary in phenotypic severity, with the most severe alleles showing the greatest decrease in elongation rate. The sma-1 gene encodes a homolog of betaH-spectrin, a novel beta-spectrin isoform first identified in Drosophila. sma-1 RNA is expressed in epithelial tissues in the C. elegans embryo: in the embryonic epidermis at the start of morphogenesis and subsequently in the developing pharynx, intestine and excretory cell. In Drosophila, betaH-spectrin associates with the apical plasma membrane of epithelial cells; beta-spectrin is found at the lateral membrane. We propose that SMA-1 is a component of an apical membrane skeleton in the C. elegans embryonic epidermis that determines the rate of elongation during morphogenesis.

REFERENCES

Albertson
D. G.
,
Thomson
J. N.
(
1976
)
The pharynx of Caenorhabditis elegans.
Phil. Trans. Roy. Soc. London
275
,
299
325
Bennett
V.
,
Gilligan
D. M.
(
1993
)
The spectrin-based membrane skeleton and micron-scale organization of the plasma membrane.
Ann. Rev. Cell Biol
9
,
27
66
Brenner
S.
(
1974
)
The genetics of Caenorhabditis elegans.
Genetics
77
,
71
94
Byers
T. J.
,
Husain-Chishti
A.
,
Dubreuil
R. R.
,
Branton
D.
,
Goldstein
L. S. B.
(
1989
)
Sequence similarity of the amino-terminal domain of Drosophila beta spectrin to alpha actinin and dystrophin.
J. Cell Biol
109
,
1633
1641
Byers
T. J.
,
Brandin
E.
,
Lue
R. A.
,
Winograd
E.
,
Branton
D.
(
1992
)
The complete sequence of Drosophila -spectrin reveals supra-motifs comprising eight 106-residue segments.
Proc. Nat. Acad. Sci. USA
89
,
6187
6191
Costa
M.
,
Draper
B. W.
,
Priess
J. R.
(
1997
)
The role of actin filaments in patterning the Caenorhabditis elegans cuticle.
Dev. Biol
184
,
373
384
de Cuevas
M.
,
Lee
J. K.
,
Spradling
A. C.
(
1996
)
-spectrin is required for germline cell division and differentiation in the Drosophila ovary.
Development
122
,
3959
3968
Dubreuil
R. R.
,
Byers
T. J.
,
Sillman
A. L.
,
Bar-Zivi
D.
,
Goldstein
L. S. B.
,
Branton
D.
(
1989
)
The complete sequence of Drosophila-spectrin: conservation of structural domains between -spectrin and-actinin.
J. Cell Biol
109
,
2197
2205
Dubreuil
R. R.
,
Byers
T. J.
,
Stewart
C. T.
,
Kiehart
D. P.
(
1990
)
A-spectrin isoform from Drosophila () is similar in size to vertebrate dystrophin.
J. Cell. Biol
111
,
1849
1858
Dubreuil
R. R.
,
Maddux
P. B.
,
Grushko
T. A.
,
MacVicar
G. R.
(
1997
)
Segregation of two spectrin isoforms: polarized membrane-binding sites direct polarized membrane skeleton assembly.
Mol. Biol. Cell
8
,
1933
1942
Fire
A.
,
Albertson
D.
,
Harrison
S. W.
,
Moerman
D. G.
(
1991
)
Production of antisense RNA leads to effective and specific inhibition of gene expression in C. elegans muscle.
Development
113
,
503
514
Francis
R.
,
Waterston
R. H.
(
1991
)
Muscle cell attachment in Caenorhabditis elegans.
J. Cell Biol
114
,
465
479
Glenney
J. R.
,
Glenney
P.
,
Osborn
M.
,
Weber
K.
(
1982
)
An F-actin and calmodulin-binding protein from isolated intestinal brush borders has a morphology related to spectrin.
Cell
28
,
843
854
Guo
S.
,
Kemphues
K.
(
1995
)
par-1, a gene required for establishing polarity in C. elegans embryos, encodes a putative Ser/Thr kinase that is asymmetrically distributed.
Cell
81
,
611
620
Howe
C. L.
,
Sacramone
L. M.
,
Mooseker
M. S.
,
Morrow
J. S.
(
1985
)
Mechanisms of cytoskeletal regulation: modulation of membrane affinity in avian brush border and erythrocyte spectrins.
J. Cell Biol
101
,
1379
1385
Kennedy
S. P.
,
Warren
S. L.
,
Forget
B. G.
,
Morrow
J. S.
(
1991
)
Ankyrin binds to the 15th repetitive unit of erythroid and nonerythroid-spectrin.
J. Cell Biol
115
,
267
277
Miller
D. M.
,
Stockdale
F. E.
,
Karn
J.
(
1986
)
Immunological identification of the genes encoding the four myosin heavy chain isoforms of Caenorhabditis elegans.
Proc. Nat. Acad. Sci. USA
83
,
2305
2309
Priess
J. R.
,
Hirsh
D. I.
(
1986
)
Caenorhabditis elegans morphogenesis: the role of the cytoskeleton in elongation of the embryo.
Dev. Biol
117
,
156
173
Pulak
R.
,
Anderson
P.
(
1993
)
mRNA surveillance by the Caenorhabditis elegans smg genes.
Genes Dev
7
,
1885
1897
Rhind
N. R.
,
Miller
L. M.
,
Kopczynski
J. B.
,
Meyer
B. J.
(
1995
)
xol-1 acts as an early switch in the C. elegans male/hermaphrodite decision.
Cell
8
,
71
82
Rocheleau
C. E.
,
Downs
W. D.
,
Lin
R.
,
Wittman
C.
,
Bei
Y.
,
Cha
Y. H.
,
Ali
M.
,
Priess
J. R.
(
1997
)
Wnt signalling and an APC-related gene specify endoderm in early C. elegans embryos.
Cell
90
,
707
716
Seydoux
G.
,
Fire
A.
(
1994
)
Soma-germline asymmetry in the distributions of embryonic RNAs in Caenorhabditis elegans.
Development
120
,
2823
2834
Speicher
D. W.
,
Desilva
T. M.
,
Speicher
K. D.
,
Ursitti
J. A.
,
Hembrach
P.
,
Weglarz
L.
(
1993
)
Location of the human red cell spectrin tetramer binding site and detection of a related ‘closed’ hairpin loop dimer using proteolytic footprinting.
J. Biol. Chem
268
,
4227
4235
Starich
T. A.
,
Herman
R. K.
,
Kari
C. K.
,
Yeh
W.-H.
,
Schackwitz
W. S.
,
Schuyler
M. W.
,
Collet
J.
,
Thomas
J. H.
,
Riddle
D. L.
(
1995
)
Mutations affecting the chemosensory neurons of Caenorhabditis elegans.
Genetics
139
,
171
188
Sulston
J. E.
,
Horvitz
H. R.
(
1977
)
Post-embryonic cell lineages of the nematode, Caenorhabditis elegans.
Dev. Biol
56
,
110
156
Sulston
J. E.
,
Schierenberg
E.
,
White
J. G.
,
Thomson
J. N.
(
1983
)
The embryonic cell lineage of the nematode Caenorhabditis elegans.
Dev. Biol
100
,
64
119
Thomas
G. H.
,
Kiehart
D. P.
(
1994
)
Heavy-spectrin has a restricted tissue and subcellular distribution during Drosophila embryogenesis.
Development
120
,
2039
2050
Thomas
G. H.
,
Newbern
E. C.
,
Korte
C. C.
,
Bales
M. A.
,
Muse
S. V.
,
Clark
A. G.
,
Kiehart
D. P.
(
1997
)
Intragenic duplication and divergence in the spectrin superfamily of proteins.
Mol. Biol. Evol
14
,
1285
1295
Thomas
G. H.
,
Zarnescu
D. C.
,
Juedes
A. E.
,
Bales
M. A.
,
Londergan
A.
,
Korte
C. C.
,
Kiehart
D. P.
(
1998
)
DrosophilaHeavy-spectrin is essential for development and contributes to specific cell fates in the eye.
Development
125
,
2125
2134
Waterston
R.
,
Sulston
J.
(
1995
)
The genome of Caenorhabditis elegans.
Proc. Nat. Acad. Sci.USA
92
,
10836
10840
Williams
B. D.
,
Waterston
R. H.
(
1994
)
Genes critical for muscle development and function in Caenorhabditis elegans identified through lethal mutations.
J. Cell Biol
124
,
475
490
Williams-Masson
E. M.
,
Malik
A. N.
,
Hardin
J.
(
1997
)
An actin-mediated two-step mechanism is required for ventral enclosure of the C. elegans hypodermis.
Development
124
,
2889
2901
Winkelmann
J. C.
,
Forget
B. G.
(
1993
)
Erythroid and nonerythroid spectrins.
Blood
81
,
3173
3185
Wissman
A.
,
Ingles
J.
,
McGhee
J. D.
,
Mains
P.
(
1997
)
Caenorhabditis elegans LET-502 is related to Rho-binding kinases and human myotonic dystrophy kinase and interacts genetically with a homolog of the regulatory subunit of smooth muscle myosin phosphatase to affect cell shape.
Genes Dev
11
,
409
422
Yandell
M. D.
,
Edgar
L.
,
Wood
W. B.
(
1994
)
Trimethylpsoralen induces small deletion mutations in Caenorhabditis elegans.
Proc. Nat. Acad. Sci.USA
91
,
1381
1385
This content is only available via PDF.