Development of the posterior body (lumbosacral region and tail) in vertebrates is delayed relative to gastrulation. In amniotes, it proceeds with the replacement of the regressed node and primitive streak by a caudal blastema-like mass of mesenchyme known as the tail bud. Despite apparent morphological dissimilarities, recent results suggest that tail development in amniotes is in essence a continuation of gastrulation, as is the case in Xenopus. However, this has been inferred primarily from the outcome of fate mapping studies demonstrating discrete, regionalized cell populations in the tail bud, like those present at gastrulation. Our analysis of the tail bud distribution of several molecular markers that are expressed in specific spatial domains during chick gastrulation confirms these results. Furthermore, we present evidence that gastrulation-like ingression movements from the surface continue in the early chick tail bud and that the established tail bud retains organizer activity. This ‘tail organizer’ has the expected properties of being able to recruit uncommitted host cells into a new embryonic axis and induce host neural tissue with posteriorly regionalized gene expression when grafted to competent host cells that are otherwise destined to form only extra-embryonic tissue. Together, these results indicate that chick tail development is mechanistically continuous with gastrulation and that the developing tail in chick may serve as a useful experimental adjunct to investigate the molecular basis of inductive interactions operating during gastrulation, considering that residual tail organizing activity is still present at a surprisingly late stage.

Bally-Cuif
L.
,
Gulisano
M.
,
Broccoli
V.
,
Boncinelli
E.
(
1995
)
c-otx2 is expressed in two different phases of gastrulation and is sensitive to retinoic acid treatment in chick embryo.
Mech Dev
49
,
49
63
Bang
A. G.
,
Papalopulu
N.
,
Kintner
C.
,
Goulding
M. D.
(
1997
)
Expression of Pax-3 is initiated in the early neural plate by posteriorizingsignals produced by the organizer and by posterior non-axial mesoderm.
Development
124
,
2075
2085
Beddington
R.
(
1994
)
Induction of a second neural axis by mouse node.
Development
120
,
613
620
Blumberg
B.
,
Bolado
J.
Jr.
,
Moreno
T. A.
,
Kintner
C.
,
Evans
R. M.
,
Papalopulu
N.
(
1997
)
An essential role for retinoid signaling in anteroposterior neural patterning.
Development
124
,
373
379
Catala
M.
,
Teillet
M. A.
,
De Robertis
E. M.
,
Le Douarin
N. M.
(
1996
)
A spinal cord fate map in the avian embryo: while regressing, Hensen's node lays down the notochord and floor plate thus joining the spinal cord lateral walls.
Development
122
,
2599
2610
Catala
M.
,
Teillet
M. A.
,
Le Douarin
N.
(
1995
)
Organization and development of the tail bud analyzed with the quail-chick chimaera system.
Mech. Dev
51
,
51
65
Conlon
R. A.
,
Rossant
J.
(
1992
)
Exogenous retinoic acid rapidly induces anterior ectopic expression of murine Hox2 genes in vivo.
Development
116
,
357
368
Cox
W. G.
,
Hemmati-Brivanlou
A.
(
1995
)
Caudalization of neural fate by tissue recombination and bFGF.
Development
121
,
4349
4358
Criley
B. B.
(
1969
)
Analysis of the embryonic sources and mechanisms of development of posterior levels of chick neural tubes.
J. Morphol
128
,
465
502
Davis
C. A.
,
Holmyard
D. P.
,
Millen
K. J.
,
Joyner
A. L.
(
1991
)
Examining pattern formation in mouse, chicken and frog embryos with an En -specific antiserum.
Development
111
,
287
298
Dias
M. S.
,
Schoenwolf
G. C.
(
1990
)
Formation of ectopic neuroepithelium in chick blastoderm: age-related capacities for induction and self-differentiation following transplantation of quail Hensen's nodes.
Anat. Rec
229
,
437
448
Foley
A. C.
,
Storey
K. G.
,
Stern
C. D.
(
1997
)
The prechordal region lacks neural inducing ability, but can confer anterior character to more posterior neuroepithelium.
Development
124
,
2983
2996
Gennaro
L. D. D.
(
1991
)
Origin of the avian glycogen body: I. Effect of tail bud removal in the chick embryo.
Growth. Dev. Aging
55
,
19
26
Gofflot
F.
,
Hall
M.
,
Morriss-Kay
G. M.
(
1997
)
Genetic patterning of the developing mouse tail at the time of posterior neuropore closure.
Dev. Dyn
210
,
431
445
Gont
L. K.
,
Steinbeisser
H.
,
Blumberg
B.
,
De Robertis
E. M.
(
1993
)
Tail formation as a continuation of gastrulation: the multiple cell populations of the Xenopus tailbud derive from the late blastopore lip.
Development
119
,
991
1004
Griffith
C. M.
,
Wiley
M. J.
,
Sanders
E. J.
(
1992
)
The vertebrate tailbud: three germ layers from one tissue.
Anat. Embryol
185
,
101
113
Hamburger
V.
,
Hamilton
H. L.
(
1951
)
A series of normal stages in the development of the chick.
J. Morphol
88
,
49
92
Holmdahl
D. E.
(
1925
)
Die erste Entwicklung des Korpers bei den Vogelnund Saugetieren, inkl. dem Menschen, besonders mit Rucksicht aufdie Bildung des Ruckenmarks, des Zoeloms und der entodermalenKloake nebst einem Exkurs uber die Entstehung der spinabifida in der Lumbosakralregion.
Gegenbaurs. Morphol. Jahrb
54
,
333
384
Holmdahl
D. E.
(
1925
)
Experimentelle Untersuchungen uber die Lage der Grenze zwischen primarer und sekundarer Korperentwicklung beim Huhn.
Anat. Anz
59
,
393
396
Hughes
A. F.
,
Freeman
R. B.
(
1974
)
Comparative remarks on the development of the tail cord among higher vertebrates.
J. Embryol. exp. Morph
32
,
355
363
Izpisua-Belmonte
J. C.
,
de Robertis
E. M.
,
Storey
K. G.
,
Stern
C. D.
(
1993
)
The homeobox gene goosecoid and the origin of organizer cells in the early chick blastoderm.
Cell
74
,
645
659
Kanki
J. P.
,
Ho
R. K.
(
1997
)
The development of the posterior body in zebrafish.
Development
124
,
881
893
Kintner
C. R.
,
Dodd
J.
(
1991
)
Hensen's node induces neural tissue in Xenopus ectoderm. Implications for the action of the organizer in neural induction.
Development
113
,
1495
1505
Kispert
A.
,
Ortner
H.
,
Cooke
J.
,
Herrmann
B. G.
(
1995
)
The chick Brachyury gene: Developmental expression pattern and response to axial induction by localized activin.
Dev. Biol
168
,
406
415
Klika
E.
,
Jelinek
R.
(
1969
)
The structure of the end and tail bud of the chick embryo.
Folia Morphol (Praha)
17
,
29
40
Knezevic
V.
,
De Santo
R.
,
Mackem
S.
(
1997
)
Two novel chick T-box genes related to mouse Brachyury are expressed in different, non-overlapping mesodermal domains during gastrulation.
Development
124
,
411
419
Knezevic
V.
,
Ranson
M.
,
Mackem
S.
(
1995
)
The organizer-associated chick homeobox gene, Gnot1, is expressed before gastrulation and regulated synergistically by activin and retinoic acid.
Dev. Biol
171
,
458
470
Lemaire
P.
,
Kodjabachian
L.
(
1996
)
The vertebrate organizer: structure and molecules.
Trends Genet
12
,
525
531
Lu
H. C.
,
Revelli
J. P.
,
Goering
L.
,
Thaller
C.
,
Eichele
G.
(
1997
)
Retinoid signaling is required for the establishment of a ZPA and for the expression of Hoxb-8, a mediator of ZPA formation.
Development
124
,
1643
1651
Mangold
O.
(
1933
)
Uber die induktionsfahigkeit der verschiedenen Bezirke der neurula von urodelen.
Naturwissenschaften
21
,
761
766
Millet
S.
,
Bloch-Gallego
E.
,
Simeone
A.
,
Alvarado-Mallart
R.-M.
(
1996
)
The caudal limit of Otx2 gene expression as a marker of the midbrain/hindbrain boundary: a study using in situ hybridisation and chick/quail homotopic grafts.
Development
122
,
3785
3797
Muhr
J.
,
Jessell
T.M.
,
Edlund
T.
(
1997
)
Assignment of early caudal identity to neural plate cells by a signal from caudal paraxial mesoderm.
Neuron
19
,
487
502
Muller
F.
,
O'Rahilly
R.
(
1987
)
The development of the human brain, the closure of the caudal neuropore, and the beginning of secondary neurulation at stage 12.
Anat. Embryol
176
,
413
430
New
D. A. T.
(
1955
)
A new technique for the cultivation of the chick embryo in vitro.
J. Embryol. Exp. Morph
3
,
320
331
Nicolet
G.
(
1967
)
La chronologie d'invagination chez le Poulet: Etude a l'aide de la thymidine tritiee.
Experientia
23
,
576
577
Nicolet
G.
(
1970
)
Analyse autoradiographique de la localisation des differents ebauches presomptives dans la ligne primitive de l'embryon de Poulet.
J. Embryol. Exp. Morphol
23
,
79
108
Nicolet
G.
(
1971
)
Avian gastrulation.
Adv. Morphog
9
,
231
262
Ooi
V. E. C.
,
Sanders
E. J.
,
Bellairs
R.
(
1986
)
The contribution of the primitive streak to the somites in the avian embryo.
J. Embryol. Exp. Morphol
92
,
193
206
Pera
E. M.
,
Kessel
M.
(
1997
)
Patterning of the chick forebrain anlage by the prechordal plate.
Development
124
,
4153
4162
Psychoyos
D.
,
Stern
C. D.
(
1996
)
Fates and migratory routes of primitive streak cells in the chick embryo.
Development
122
,
1523
1534
Roberts
C.
,
Platt
N.
,
Streit
A.
,
Schachner
M.
,
Stern
C. D.
(
1991
)
The L5 epitope: an early marker for neural induction in the chick embryo and its involvement in inductive interactions.
Development
112
,
959
970
Rodriguez-Gallardo
L.
,
Climent
V.
,
Garcia-Martinez
V.
,
Schoenwolf
G. C.
,
Alvarez
I.S.
(
1997
)
Targeted over-expression of FGF in chick embryos induces formation of ectopic neural cells.
Int. J. Dev. Biol
41
,
715
723
Schoenwolf
G. C.
(
1978
)
Effects of complete tail bud extirpation on early development of the posterior region of the chick embryo.
Anat Rec
192
,
289
295
Schoenwolf
G. C.
(
1979
)
Histological and ultrastructural observations of tail bud formation in the chick embryo.
Anat Rec
193
,
131
47
Schoenwolf
G. C.
(
1984
)
Histological and ultrastructural studies of secondary neurulation in mouse embryos.
Am. J. Anat
169
,
361
376
Schoenwolf
G. C.
,
DeLongo
J.
(
1980
)
Ultrastructure of secondary neurulation in the chick embryo.
Am. J. Anat
158
,
43
63
Schoenwolf
G. C.
,
Smith
J. L.
(
1990
)
Mechanisms of neurulation: traditional viewpoint and recent advances.
Development
109
,
243
270
Seevers
C. H.
(
1932
)
Potencies of the end bud and other caudal levels of the early chick embryo, with special reference to the origin of the metanephros.
Anat. Rec
54
,
217
246
Seichert
V.
,
Jelinek
R.
(
1968
)
Tissue shifts in the end and tail bud of the chick embryo.
Folia. Morphol
16
,
436
446
Spratt
N. T.
(
1952
)
Localization of the prospective neural plate in the early chick blastoderm.
J. Exp. Zool
120
,
109
130
Stein
S.
,
Kessel
M.
(
1995
)
A homeobox gene involved in node, notochord and neural plate formation of chick embryos.
Mech. Dev
49
,
37
48
Storey
K. G.
,
Crossley
J. M.
,
De Robertis
E. M.
,
Norris
W. E.
,
Stern
C. D.
(
1992
)
Neural induction and regionalisation in the chick embryo.
Development
114
,
729
741
Storey
K. G.
,
Goriely
A.
,
Sargent
C. M.
,
Brown
J. M.
,
Burns
H. D.
,
Abud
H. M.
,
Heath
J. K.
(
1998
)
Early posterior neural tissue is induced by FGF in the chick embryo.
Development
125
,
473
484
Streit
A.
,
Sockanathan
S.
,
Perez
L.
,
Rex
M.
,
Scotting
P. J.
,
Sharpe
P. T.
,
Lovell-Badge
R.
,
Stern
C. D.
(
1997
)
Preventing the loss of competence for neural induction: HGF/SF, L5 and Sox-2.
Development
124
,
1191
1202
Tam
P. P. L.
(
1984
)
The histogenetic capacity of tissues in the caudal end of the embryonic axis of the mouse.
J. Embryol. exp. Morph
82
,
253
266
Tam
P. P. L.
,
Behringer
R. R.
(
1997
)
Mouse gastrulation: the formation of a mammalian body plan.
Mech. Dev
68
,
3
25
Tam
P. P. L.
,
Quinlan
G. A.
(
1996
)
Mapping vertebrate embryos.
Curr. Biol
6
,
104
106
Tucker
A. S.
,
Slack
J. M. W.
(
1995
)
Tail bud determination in the vertebrate embryo.
Curr. Biol
5
,
807
813
Tucker
A. S.
,
Slack
J. M. W.
(
1995
)
The Xenopus laevis tail-forming region.
Development
121
,
249
262
Wilson
V.
,
Beddington
R. S. P.
(
1996
)
Cell fate and morphogenetic movement in the late mouse primitive streak.
Mech. Dev
55
,
79
89
Zwilling
E.
(
1942
)
Restitution of the tail in the early chick embryo.
J. Exp. Zool
91
,
453
463
This content is only available via PDF.