Transgenic mice were generated containing a cytomegaloviral promoter driven construct (CMV43) expressing the gap junction polylpeptide connexin 43. RNA and protein analysis confirmed that the transgene was being expressed. In situ hybridization analysis of embryo sections revealed that transgene expression was targeted to the dorsal neural tube and in subpopulations of neural crest cells. This expression pattern was identical to that seen in transgenic mice harboring other constructs driven by the cytomegaloviral promoter (Kothary, R., Barton, S. C., Franz, T., Norris, M. L., Hettle, S. and Surani, M. A. H. (1991) Mech. Develop. 35, 25–31; Koedood, M., Fitchel, A., Meier, P. and Mitchell, P. (1995) J. Virol. 69, 2194–2207), and corresponded to a subset of the endogenous Cx43 expression domains. Significantly, dye injection studies showed that transgene expression resulted in an increase in gap junctional communication. Though viable and fertile, these transgenic mice exhibited reduced postnatal viability. Examination of embryos at various stages of development revealed developmental perturbations consisting of cranial neural tube defects (NTD) and heart malformations. Interestingly, breeding of the CMV43 transgene into the Cx43 knockout mice extended postnatal viability of mice homozygote for the Cx43 knockout allele, indicating that the CMV43 trangsene may partially complement the Cx43 deletion. Both the Cx43 knockout and the CMV43 transgenic mice exhibit heart defects associated with malformations in the conotruncus, a region of the heart in which neural crest derivatives are known to have important roles during development. Together with our results indicating neural-crest-specific expression of the transgene in our CMV-based constructs, these observations strongly suggest a role for Cx43-mediated gap junctional communication in neural crest development. Furthermore, these observations indicate that the precise level of Cx43 function may be of critical importance in downstream events involving these migratory cell populations. As such, the CMV43 mouse may represent a powerful new model system for examining the role of extracardiac cell populations in cardiac morphogenesis and other developmental processes.
Heart and neural tube defects in transgenic mice overexpressing the Cx43 gap junction gene
J.L. Ewart, M.F. Cohen, R.A. Meyer, G.Y. Huang, A. Wessels, R.G. Gourdie, A.J. Chin, S.M. Park, B.O. Lazatin, S. Villabon, C.W. Lo; Heart and neural tube defects in transgenic mice overexpressing the Cx43 gap junction gene. Development 1 April 1997; 124 (7): 1281–1292. doi: https://doi.org/10.1242/dev.124.7.1281
Download citation file:
Advertisement
Cited by
Development Journal Meeting 2022: From Stem Cells to Human Development
-JournalMeeting.png?versionId=3939)
Following a virtual meeting in 2020, we are delighted to announce that the fifth iteration of our popular Journal Meeting will be held from 11-14 September 2022 at the historic Wotton House, Surrey. Registration is open now.
Preprints in Development
(update)-InPreprints.png?versionId=3939)
As part of our efforts to support the use of preprints and help curate the preprint literature, we are delighted to launch a new article type: ‘In preprints’. These pieces will discuss one or more recent preprints and place them in a broader context.
Submit your next Techniques and Resources paper to Development
-TechniquesAndResources.png?versionId=3939)
Development regularly publishes Techniques and Resources papers. These manuscripts describe a novel technique, a substantial advance of an existing technique, or a new resource that will have a significant impact on developmental biology research. Find out more here.
Transitions in development: Rashmi Priya
(update)-RashmiPriya.png?versionId=3939)
Rashmi Priya’s research group uses the zebrafish heart as a model system to understand the complex morphogenetic events of organogenesis. We interviewed Rashmi to learn about her career path so far, and to discuss the challenges of starting a lab in the middle of a global pandemic.
The Node Network
-NodeNetwork.png?versionId=3939)
The Node Network is a global directory of developmental and stem cell biologists, designed to help you find speakers, referees, panel members and potential collaborators. Find out more about the Node Network.