Caenorhabditis elegans germ-line proliferation is controlled by an inductive interaction between the somatic distal tip cell and the germ line. GLP-1, a member of the Notch family of transmembrane receptors, is required continuously in the germ line to transduce the proliferative signal. In the absence of GLP-1, all proliferative germ cells exit the mitotic cell cycle and enter meiotic prophase. We have characterized an activating mutation in glp-1, oz112gf, that has the opposite phenotype. Homozygous glp-1(oz112gf) hermaphrodites and males have a completely tumorous germ line in which germ cells never leave the mitotic cycle. In glp-1(oz112gf) heterozygotes, germ-line polarity is established correctly, but as adults age, the distal proliferative population expands leading to a late-onset tumorous phenotype. The mutant receptor is constitutively active, promoting proliferation in the absence of ligand. The normal distal-proximal spatial restriction of GLP-1 expression is lost in tumorous and late-onset tumorous animals; ectopically proliferating germ cells contain membrane-associated GLP-1. The correlation between proliferation and expression, both in wild-type where glp-1 signalling is limited by localized ligand and in glp-1(oz112gf) where signalling is ligand-independent, suggests that glp-1 signalling positively regulates GLP-1 expression. In addition to germ-line defects, glp-1(oz112gf) causes inappropriate vulval cell fate specification. A missense mutation in a conserved extracellular residue, Ser642, adjacent to the transmembrane domain, is sufficient to confer the glp-1(oz112gf) mutant phenotypes. Two mammalian Notch family members, TAN-1 and int-3, are proto-oncogenes. Thus, activating mutations in both invertebrate and vertebrate Notch family members can lead to tumor formation.

REFERENCES

REFERENCES
Artavanis-Tsakonas
S.
,
Matsuno
K.
,
Fortini
M. E.
(
1995
)
Notch signaling.
Science
268
,
225
232
Austin
J.
,
Kimble
J.
(
1987
)
glp-1 is required in the germ line for regulation of the decision between mitosis and meiosis in C. elegans.
Cell
51
,
589
599
Bishop
J.
(
1991
)
Molecular themes in oncogenesis.
Cell
64
,
235
248
Bowerman
B.
(
1995
)
Determinants of blastomere identity in the early C. elegans embryo.
BioEssays
17
,
404
414
Brenner
S.
(
1974
)
The genetics of Caenorhabditis elegans.
Genetics
77
,
71
94
Christensen
S.
,
Kodoyianni
V.
,
Bosenberg
M.
,
Friedman
L.
,
Kimble
J.
(
1996
)
lag-1, a gene required for lin-12 and glp-1 signalling in Caenorhabditis elegans, is homologous to human CBF1 and Drosophila Su(H).
Development
122
,
1373
1383
Crittenden
S. L.
,
Troemel
E. R.
,
Evans
T. C.
,
Kimble
J.
(
1994
)
GLP-1 is localized to the mitotic region of the C. elegans germ line.
Development
120
,
2901
2911
Ellis
R. E.
,
Kimble
J.
(
1995
)
The fog-3 gene and regulation of cell fate in the germ line of Caenorhabditis elegans.
Genetics
139
,
561
577
Ellisen
L. W.
,
Bird
J.
,
West
D. C.
,
Soreng
A. L.
,
Reynolds
T. C.
,
Smith
S. D.
,
Sklar
J.
(
1991
)
TAN1, the human homolog of the Drosophila Notch gene, is broken by chromosomally translocations in T lymphoblastic neoplasms.
Cell
66
,
649
661
Evans
T. C.
,
Crittenden
S. L.
,
Kodoyianni
V.
,
Kimble
J.
(
1994
)
Translational control of maternal glp-1 mRNA establishes an asymmetry in the C. elegans embryo.
Cell
77
,
183
194
Fitzgerald
K.
,
Wilkinson
H.
,
Greenwald
I.
(
1993
)
glp-1 can substitute for lin-12 in specifying cell fate decisions in Caenorhabditis elegans.
Development
119
,
1019
1027
Fitzgerald
K.
,
Greenwald
I.
(
1995
)
Interchangeability of Caenorhabditis elegans DSL proteins and intrinsic signalling activity of their extracellular domains in vivo.
Development
121
,
4275
4282
Francis
R.
,
Barton
M. K.
,
Kimble
J.
,
Schedl
T.
(
1995
)
gld-1, a tumor suppressor gene required for oocyte development in Caenorhabditis elegans.
Genetics
139
,
579
606
Francis
R.
,
Maine
E.
,
Schedl
T.
(
1995
)
Analysis of the multiple roles of gld-1 in germline development: interactions with the sex determination cascade and the glp-1 signaling pathway.
Genetics
139
,
607
630
Greenwald
I. S.
,
Sternberg
P. W.
,
Horvitz
H.R.
(
1983
)
The lin-12 locus specifies cell fates in Caenorhabditis elegans.
Cell
34
,
435
444
Greenwald
I.
,
Seydoux
G.
(
1990
)
Analysis of gain-of-function mutations of the lin-12 gene of Caenorhabditis elegans.
Nature
346
,
197
199
Greenwald
I.
,
Rubin
G.
(
1992
)
Making a difference: The role of cell-cell interactions in establishing separate identities for equivalent cells.
Cell
68
,
271
281
Greenwald
I.
(
1994
)
Structure/function studies of LIN-12/Notch proteins.
Current Opinion Genet. Dev
4
,
556
562
Henderson
S. T.
,
Gao
D.
,
Lambie
E. J.
,
Kimble
J.
(
1994
)
lag-2 may encode a signaling ligand for the GLP-1 and LIN-12 receptors of C. elegans.
Development
120
,
2913
2924
Hodgkin
J.
,
Barnes
T.
(
1991
)
More is not better: brood size and population growth in a self-fertilizing nematode.
Proc. R. Soc. Lond. B
246
,
19
24
Jhappan
C.
,
Gallahan
D.
,
Stahle
C.
,
Chu
E.
,
Smith
G. H.
,
Merlino
G.
,
Callahan
R.
(
1992
)
Expression of an activated Notch -related int-3 transgene interferes with cell differentiation and induces neoplastic transformation in mammary and salivary glands.
Genes Dev
6
,
345
355
Jones
A.
,
Schedl
T.
(
1995
)
Mutations in gld-1, a female germ cell-specific tumor suppressor gene in Caenorhabditis elegans, affect a conserved domain also found in Src-associated protein Sam68.
Genes Dev
9
,
1491
1504
Kimble
J.
,
Hirsh
D.
(
1979
)
Postembryonic cell lineages of the hermaphrodite and male gonads in Caenorhabditis elegans.
Dev. Biol
70
,
396
417
Kimble
J.
(
1981
)
Alterations in cell lineage following laser ablation of cells in the somatic gonad of Caenorhabditis elegans.
Dev. Biol
87
,
286
300
Kimble
J. E.
,
White
J. G.
(
1981
)
On the control of germ cell development in Caenorhabditis elegans.
Dev. Biol
81
,
208
219
Kodoyianni
V.
,
Maine
E.
,
Kimble
J.
(
1992
)
Molecular basis of loss-of-function mutations in the glp-1 gene of Caenorhabditis elegans.
Mol. Biol. Cell
3
,
1199
1213
Lambie
E. J.
,
Kimble
J.
(
1991
)
Genetic control of cell interactions in nematode development.
Annu. Rev. Genet
25
,
411
436
Lambie
E. J.
,
Kimble
J.
(
1991
)
Two homologous regulatory genes, lin-12 and glp-1, have overlapping functions.
Development
112
,
231
240
Lissemore
J.
,
Currie
P.
,
Turk
C.
,
Maine
E.
(
1993
)
Intragenic dominantsuppressors of glp-1, a gene essential for cell-signaling in Caenorhabditis elegans, support a role for cdc10/SWI6/ankyrin motifs in GLP-1 function.
Genetics
135
,
1023
1034
Lyman
D.
,
Young
M.
(
1993
)
Further evidence for function of the Drosophila Notch protein as a transmembrane receptor.
Proc. Natl. Acad. Sci. USA
90
,
10395
10399
Maine
E. M.
,
Lissemore
J. L.
,
Starmer
W. T.
(
1995
)
A phylogenetic analysis of vertebrate and invertebrate Notch -related genes.
Molecular Phylogenetics and Evolution
4
,
139
155
Mango
S. E.
,
Maine
E. M.
,
Kimble
J.
(
1991
)
Carboxy-terminal truncation activates glp-1 protein to specify vulval fates in Caenorhabditis elegans.
Nature
352
,
811
815
Mello
C. C.
,
Kramer
J. M.
,
Stinchcomb
D.
,
Ambros
V.
(
1991
)
Efficient gene transfer in C. elegans: extrachromosomal maintenance and integration of transforming sequences.
EMBO J
10
,
3959
3970
Robbins
J.
,
Blondel
B. J.
,
Gallahan
D.
,
Callahan
R.
(
1992
)
Mouse mammary tumor gene int-3: a member of the notch gene family transforms mammary epithelial cells.
J. Virol
66
,
2594
2599
Roehl
H.
,
Kimble
J.
(
1993
)
Control of cell fate in C. elegans by a glp-1 peptide consisting primarily of ankyrin repeats.
Nature
364
,
632
635
Rosenbluth
R. E.
,
Cuddeford
C.
,
Baillie
D. L.
(
1983
)
Mutagenesis in Caenorhabditis elegans. I. A rapid eukaryotic mutagen test system using the reciprocal translocation eT1(III,V).
Mutat. Res
110
,
39
48
Sawyers
C.
,
Denny
C.
,
Witte
O.
(
1991
)
Leukemia and the disruption of normal hematopoiesis.
Cell
64
,
337
350
Seydoux
G.
,
Schedl
T.
,
Greenwald
I.
(
1990
)
Cell-cell interactions prevent a potential inductive interaction between soma and germ line in Caenorhabditis elegans.
Cell
61
,
939
951
Skakkebaek
N.
,
Berthelsen
J.
,
Giwercman
A.
,
Muller
J.
(
1987
)
Carcinoma-in-situ of the testis: possible origin from gonocytes and precursor of all types of germ cell tumors except spermatocytoma.
Internat. J. Androl
10
,
19
28
Sternberg
P. W.
,
Horvitz
H.R.
(
1986
)
Pattern formation during vulval development in C. elegans.
Cell
44
,
761
772
Sulston
J. E.
,
Horvitz
H. R.
(
1977
)
Post-embryonic cell lineages of the nematode Caenorhabditis elegans.
Dev. Biol
56
,
110
156
Surti
I.
,
Hoffner
L.
,
Chakravarti
A.
,
Ferrell
R.
(
1990
)
Genetics and Biology of human ovarian teratomas. I. Cytogenetic analysis of mechanism of origin.
Am. J. Hum. Genet
47
,
635
643
Tax
F. E.
,
Yeargers
J. J.
,
Thomas
J. H.
(
1994
)
Sequence of C. elegans lag-2 reveals a cell-signalling domain shared with Delta and Serrate of Drosophila.
Nature
368
,
150
154
Wilkinson
H. A.
,
Fitzgerald
K.
,
Greenwald
I.
(
1994
)
Reciprocal changes in expression of the receptor lin-12 and its ligand lag-2 prior to commitment in a C. elegans cell fate decision.
Cell
79
,
1187
1196
Williams
B. D.
,
Schrank
B.
,
Huynh
C.
,
Schownkeen
R.
,
Waterston
R. H.
(
1992
)
A genetic mapping system in Caenorhabditis elegans based on polymorphic sequence-tagged sites.
Genetics
131
,
609
624
Yochem
J.
,
Greenwald
I.
(
1989
)
glp-1 and lin-12, genes implicated in distinct cell-cell interactions in C. elegans, encode similar transmembrane proteins.
Cell
58
,
553
563
This content is only available via PDF.