In order to understand the developmental mechanisms of posterior body formation in the zebrafish, a fate map of the zebrafish tailbud was generated along with a detailed analysis of tailbud cell movements. The fate map of the zebrafish tailbud shows that it contains tissue-restricted domains and is not a homogeneous blastema. Furthermore, time-lapse analysis shows that some cell movements and behaviors in the tailbud are similar to those seen during gastrulation, while others are unique to the posterior body. The extension of axial mesoderm and the continuation of ingression throughout zebrafish tail development suggests the continuation of processes initiated during gastrulation. Unique properties of zebrafish posterior body development include the bilateral distribution of tailbud cell progeny and the exhibition of different forms of ingression within specific tailbud domains. The ingression of cells in the anterior tailbud only gives rise to paraxial mesoderm, at the exclusion of axial mesoderm. Cells of the posterior tailbud undergo subduction, a novel form of ingression resulting in the restriction of this tailbud domain to paraxial mesodermal fates. The intermixing of spinal cord and muscle precursor cells, as well as evidence for pluripotent cells within the tailbud, suggest that complex inductive mechanisms accompany these cell movements throughout tail elongation. Rates of cell proliferation in the tailbud were examined and found to be relatively low at the tip of the tail indicating that tail elongation is not due to growth at its posterior end. However, higher rates of cell proliferation in the dorsomedial region of the tail may contribute to the preferential posterior movement of cells in this tailbud region and to the general extension of the tail. Understanding the cellular movements, cell fates and gene expression patterns in the tailbud will help to determine the nature of this important aspect of vertebrate development.

Barro
O.
,
Vriz
S.
,
Joly
J. S.
,
Joly
C.
,
Condamine
H.
,
Boulekbache
H.
(
1995
)
Widespread expression of the eve1 gene in zebrafish embryos affects the anterior-posterior axis pattern.
Dev. Genet
17
,
117
128
Catala
M.
,
Teillet
M. A.
,
Le Douarin
N. M.
(
1995
)
Organization and development of the tail bud analyzed with the quail-chick chimaera system.
Mech. Dev
51
,
51
65
Chesley
P.
(
1935
)
Development of the short-tailed mutant in the house mouse.
J. Exp. Zool
70
,
429
435
Criley
B. B.
(
1969
)
Analysis of the embryonic sources and mechanisms of development of posterior levels of chick neural tubes.
J. Morph
128
,
465
501
Elsdale
T.
,
Davidson
D.
(
1983
)
Somitogenesis in amphibia IV. The dynamics of tail development.
J. Embryol. Exp. Morph
76
,
157
176
Gaertner
R. A.
(
1949
)
Development of the posterior trunk and tail of the chick embryo.
J. Exp. Zool
111
,
157
174
Gont
L. K.
,
Steinbeisser
H.
,
Blumberg
B.
,
De Robertis
E. M.
(
1993
)
Tail formation as a continuation of gastrulation: the multiple cell populations of the Xenopus tailbud derive from the late blastopore lip.
Development
119
,
991
1004
Griffith
C. M.
,
Wiley
M. J.
,
Sanders
E. J.
(
1992
)
The vertebrate tailbud: three germ layers from one tissue.
Anat. Embryol
185
,
101
113
Halpern
M. E.
,
Ho
R. K.
,
Walker
C.
,
Kimmel
C. B.
(
1993
)
Induction of muscle pioneers and floor plate is distinguished by the zebrafish no tail mutation.
Cell
75
,
99
111
Halpern
M. E.
,
Thisse
C.
,
Ho
R. K.
,
Thisse
B.
,
Riggleman
B.
,
Trevarrow
B.
,
Weinberg
E. S.
,
Postlethwait
J. H.
,
Kimmel
C. B.
(
1995
)
Cell-autonomous shift from axial to paraxial mesodermal development in zebrafish floating head mutants.
Development
121
,
4257
4264
Hamburger
V.
,
Hamilton
H. L.
(
1951
)
A series of normal stages in the development of the chick embryo.
J. Morph
88
,
49
92
Hammerschmidt
M.
,
Nusslein-Volhard
C.
(
1993
)
The expression of a zebrafish gene homologous to Drosophila snail suggests a conserved function in invertebrate and vertebrate gastrulation.
Development
119
,
1107
1118
Herrmann
B. G.
,
Labeit
S.
,
Poustka
A.
,
King
T. R.
,
Lehrach
H.
(
1990
)
Cloning of the T gene required in mesoderm formation in the mouse.
Nature
343
,
617
622
Holmdahl
D. E.
(
1925
)
Experimentelle Untersuchungen uber die Lage der Grenze primarer und sekundarer Korperentwicklung beim Huhn.
Anat. Anz
59
,
393
396
Joly
J. S.
,
Joly
C.
,
Schulte-Merker
S.
,
Boulekbache
H.
,
Condamine
H.
(
1993
)
The ventral and posterior expression of the zebrafish homeobox gene eve1 is perturbed in dorsalized and mutant embryos.
Development
119
,
1261
1275
Joly
J. S.
,
Maury
M.
,
Joly
C.
,
Duprey
P.
,
Boulekbache
H.
,
Condamine
H.
(
1992
)
Expression of a zebrafish caudal homeobox gene correlates with the establishment of posterior cell lineages at gastrulation.
Differentiation
50
,
75
87
Keller
R. E.
,
Tibbetts
P.
(
1989
)
Mediolateral cell intercalation is a property of the dorsal, axial mesoderm of Xenopus laevis.
Dev. Biol
131
,
539
549
Kimmel
C. B.
(
1989
)
Genetics and early development of zebrafish.
Trends Genet
5
,
283
288
Kimmel
C. B.
,
Ballard
W. W.
,
Kimmel
S. R.
,
Ullmann
B.
,
Schilling
T. F.
(
1995
)
Stages of embryonic development of the zebrafish.
Dev. Dyn
203
,
253
310
Kimmel
C. B.
,
Warga
R. M.
(
1987
)
Cell lineages generating axial muscle in the zebrafish embryo.
Nature
327
,
234
237
Kimmel
C. B.
,
Warga
R. M.
(
1988
)
Cell lineage and developmental potential of cells in the zebrafish embryo.
Trends Genet
4
,
68
74
Kimmel
C. B.
,
Warga
R. M.
,
Schilling
T. F.
(
1990
)
Origin and organization of the zebrafish fate map.
Development
108
,
581
94
Laale
H. W.
(
1985
)
Kupffer's vesicle in Brachydanio rerio: multivesicular origin and proposed function in vitro.
Can. J. Zool
63
,
2408
2415
Mills
C. L.
,
Bellairs
R.
(
1989
)
Mitosis and cell death in the tail of the chick embryo.
Anat. Embryol
180
,
301
308
Nakao
T.
,
Ishizawa
A.
(
1984
)
Light-and electron-microscopic observations of the tail bud of the larval lamprey (Lampetra japonica), with special reference to neural tube formation.
Am. J. Anat
170
,
55
71
Neumann
P. E.
,
Frankel
W. N.
,
Letts
V. A.
,
Coffin
J. M.
,
Copp
A. J.
,
Bernfield
M.
(
1994
)
Multifactorial inheritance of neural tube defects: localization of the major gene and recognition of modifiers in ct mutant mice.
Nat. Genet
6
,
357
362
Pasteels
J.
(
1943
)
Proliferations et croissance dans la gastrulation et la formation de la queue des Vertebres.
Arch. Biol
54
,
1
51
Sausedo
R. A.
,
Schoenwolf
G. C.
(
1993
)
Cell behaviors underlying notochord formation and extension in avian embryos: Quantitative and immunocytochemical studies.
Anat. Rec
237
,
58
70
Sausedo
R. A.
,
Schoenwolf
G. C.
(
1994
)
Quantitative analysis of cell behaviors underlying notochord formation and extension in mouse embryos.
Anat. Rec
239
,
103
112
Schoenwolf
G. C.
(
1977
)
Tail (end) bud contributions to the posterior region of the chick embryo.
J. Exp. Zool
201
,
227
246
Schoenwolf
G. C.
(
1978
)
Effects of complete tail extirpation on early development of the posterior region of the chick embryo.
Anat. Rec
192
,
289
296
Schoenwolf
G. C.
(
1984
)
Histological and ultrastructural studies of secondary neurulation in the mouse embryo.
Am. J. Anat
169
,
361
376
Schoenwolf
G. C.
,
Alvarez
I. S.
(
1989
)
Roles of neuroepithelial cell rearrangement and division in shaping of the avian neural plate.
Development
106
,
427
439
Schoenwolf
G. C.
,
Delongo
J.
(
1980
)
Ultrastructure of secondary neurulation in the chick embryo.
Am. J. Anat
158
,
43
63
Schoenwolf
G. C.
,
Sheard
P.
(
1990
)
Fate Mapping the Avian Epiblast with Focal Injections of a Fluorescent-Histochemical Marker: Ectodermal Derivatives.
J. Exp. Zool
255
,
323
339
Schulte-Merker
S.
,
Ho
R. K.
,
Herrmann
B. G.
,
Nusslein-Volhard
C.
(
1992
)
The protein product of the zebrafish homologue of the mouse T gene is expressed in nuclei of the germ ring and the notochord of the early embryo.
Development
116
,
1021
1032
Schulte-Merker
S.
,
van Eeden
F. J. M.
,
Halpern
M. E.
,
Kimmel
C. B.
,
Nusslein-Volhard
C.
(
1994
)
no tail (ntl) is the zebrafish homologue of the mouse T (Brachyury) gene.
Development
120
,
1009
1015
Seevers
C. H.
(
1932
)
Potencies of the end bud and other caudal levels of the early chick embryo with special reference to the origin of the metanephros.
Anat. Rec
54
,
217
246
Shih
J.
,
Fraser
S. E.
(
1995
)
Distribution of tissue progenitors within the shield region of the zebrafish gastrula.
Development
121
,
2755
2765
Smithberg
M.
(
1954
)
The origin and development of the tail in the frog, Rana pipiens.
J. Exp. Zool
127
,
397
425
Spofford
W. R.
(
1945
)
Observations of the posterior part of the neural plate in Amblystoma.
J. Exp. Zool
99
,
35
52
Spratt
N. T.
(
1947
)
Regression and shortening of the primitive streak in the explanted chick blastoderm.
J. Exp. Zool
104
,
69
100
Takada
S.
,
Stark
K. L.
,
Shea
M. J.
,
Vassileva
G.
,
McMahon
J. A.
,
McMahon
A. P.
(
1994
)
Wnt-3a regulates somite and tailbud formation in the mouse embryo.
Genes Dev
8
,
174
189
Talbot
W. S.
,
Trevarrow
B.
,
Halpern
M. E.
,
Melby
A. E.
,
Farr
G.
,
Postlethwait
J. H.
,
Jowett
T.
,
Kimmel
C. B.
,
Kimelman
D.
(
1995
)
A homeobox gene essential for zebrafish notochord development.
Nature
378
,
150
157
Tam
P. P. L.
(
1984
)
The histogenetic capacity of tissues in the caudal end of the embryonic axis of the mouse.
J. Embryol. Exp. Morph
82
,
253
266
Thisse
C.
,
Thisse
B.
,
Schilling
T. F.
,
Postlethwait
J. H.
(
1993
)
Structure of the zebrafish snail gene and its expression in wild-type, spadetail and no tail mutant embryos.
Development
119
,
1203
1215
Tucker
A. S.
,
Slack
J. M. W.
(
1995
)
The Xenopus laevis tail-forming region.
Development
121
,
249
262
Warga
R. M.
,
Kimmel
C. B.
(
1990
)
Cell movements during epiboly and gastrulation in zebrafish.
Development
108
,
569
580
Wilson
V.
,
Manson
L.
,
Skarnes
W. C.
,
Beddington
R. S. P.
(
1995
)
The T gene is necessary for normal mesodermal morphogenetic cell movements during gastrulation.
Development
121
,
877
886
This content is only available via PDF.