At least one polar body, almost invariably the second, persists intact to the early blastocyst stage in nearly two-thirds of mouse conceptuses of the PO strain. The distribution in early blastocysts of these surviving polar bodies was highly non-random. Most not only lay in the mid-region of the embryonic-abembryonic axis but, on discovering that early blastocysts are bilaterally rather than radially symmetrical about this axis, were found to align with the bilateral axis. Cell marking experiments failed to detect movement of polar bodies relative to the surface of the conceptus during either cleavage or blastulation. That the distribution of degenerating polar bodies and their presumed debris was similar to intact ones also argued against their motility, as did the finding that at all stages second polar bodies were attached to conceptuses by a thin, extensible, weakly elastic ‘tether’. Although the transfer of small fluorochromes between them was rarely observed beyond second cleavage, the second polar body and conceptus could remain coupled ionically up to the blastocyst stage. It is concluded that the second polar body normally remains attached to the conceptus through persistence of the intercellular bridge formed during its abstriction, and therefore provides an enduring marker of the animal pole of the zygote. Hence, according to the distribution of polar bodies, the axis of bilateral symmetry of the early blastocysts is normally aligned with the animal-vegetal axis of the zygote and its embryonic-abembryonic axis is orthogonal to it. Such relationships suggest that, at least in undisturbed development, specification of the axes of the blastocyst depends on spatial patterning of the zygote.
The early blastocyst is bilaterally symmetrical and its axis of symmetry is aligned with the animal-vegetal axis of the zygote in the mouse
R.L. Gardner; The early blastocyst is bilaterally symmetrical and its axis of symmetry is aligned with the animal-vegetal axis of the zygote in the mouse. Development 15 January 1997; 124 (2): 289–301. doi: https://doi.org/10.1242/dev.124.2.289
Download citation file:
Advertisement
Cited by
Development Journal Meeting 2022: From Stem Cells to Human Development
-JournalMeeting.png?versionId=3737)
Following a virtual meeting in 2020, we are delighted to announce that the fifth iteration of our popular Journal Meeting will be held from 11-14 September 2022 at the historic Wotton House, Surrey. Registration is open now.
Special Issue: The Immune System in Development and Regeneration
(update)-ImmuneSI.png?versionId=3737)
Our latest special issue is now complete. It showcases articles that add to the repertoire of immune cell functions during development, repair and regeneration, and provide insights into the developmental pathways leading to the generation and dispersal of these cells.
Propose a new Workshop
-GSWorkshop.png?versionId=3737)
Our Workshops bring together leading experts and early-career researchers from a range of scientific backgrounds. Applications are now open to propose Workshops for 2024, one of which will be held in a Global South country.
Preprints in Development
(update)-InPreprints.png?versionId=3737)
As part of our efforts to support the use of preprints and help curate the preprint literature, we are delighted to launch a new article type: ‘In preprints’. These pieces will discuss one or more recent preprints and place them in a broader context. You can read the first article here.
FocalPlane Network launched
-FocalPlaneNetworkLaunch.png?versionId=3737)
Like the Node Network, the aim of the FocalPlane Network is to facilitate promotion and networking as well as assist those seeking conference speakers, committee members, reviewers or collaborators. We hope that it will help promote diversity in the community. Find out more and join the Network here.