In the developing nervous system of Drosophila, cells in each proneural cluster choose between neural and epidermal cell fates. The neurogenic genes mediate the cell-cell communication process whereby one cell adopts the neural cell fate and prevents other cells in the cluster from becoming neural. In the absence of neurogenic gene function, most, if not all of the cells become neural. big brain is a neurogenic gene that encodes a protein with sequence similarity to known channel proteins. It is unique among the neurogenic genes in that previous genetic studies have not revealed any interaction between big brain and the other neurogenic genes. Furthermore, the neural hypertrophy in big brain mutant embryos is less severe than that in embryos mutant for other neurogenic genes. In this paper, we show by antibody staining that bib is expressed in tissues that give rise to neural precursors and in other tissues that are affected by loss of neurogenic gene function. By immunoelectron microscopy, we found that bib is associated with the plasma membrane and concentrated in apical adherens junctions as well as in small cytoplasmic vesicles. Using mosaic analysis in the adult, we demonstrate that big brain activity is required autonomously in epidermal precursors to prevent neural development. Finally, we demonstrate that ectopically expressed big brain acts synergistically with ectopically expressed Delta and Notch, providing the first evidence that big brain may function by augmenting the activity of the Delta-Notch pathway. These results are consistent with bib acting as a channel protein in proneural cluster cells that adopt the epidermal cell fate, and serving a necessary function in the response of these cells to the lateral inhibition signal.
The Drosophila neurogenic gene big brain, which encodes a membrane-associated protein, acts cell autonomously and can act synergistically with Notch and Delta
D. Doherty, L.Y. Jan, Y.N. Jan; The Drosophila neurogenic gene big brain, which encodes a membrane-associated protein, acts cell autonomously and can act synergistically with Notch and Delta. Development 1 October 1997; 124 (19): 3881–3893. doi: https://doi.org/10.1242/dev.124.19.3881
Download citation file:
Advertisement
Cited by
Pathway to Independence programme

We’re excited to announce our new Pathway to Independence programme, aimed at supporting postdocs as they go on the job market. Find out more about the scheme in our Editorial.
Call for papers: Metabolic and Nutritional Control of Development and Regeneration

We are welcoming submissions for our next special issue, which will focus on metabolic and nutritional control of development and regeneration. Submission deadline: 15 May 2023.
Webinar: Increasing the visibility and impact of your research
-HUBSwebinar.jpg?versionId=4486)
Would you like to increase the visibility and impact of your research and raise your profile internationally? If so, register for the very practical webinar we are running in association with HUBS on 23 February 2023.
Transitions in development: Daniel Grimes

Daniel Grimes’s lab studies the consequences of ciliary mutations, including left-right patterning defects and scoliosis. We interviewed Daniel to find out more about his career path, his experience of becoming a group leader and the influence of Jurassic Park.
Preprints in Development
(update)-InPreprints.png?versionId=4486)
As part of our efforts to support the use of preprints and help curate the preprint literature, we are delighted to launch a new article type: ‘In preprints’. These pieces will discuss one or more recent preprints and place them in a broader context.