Morphogens are thought to establish pattern in early embryos by specifying several cell fates along a gradient of concentration; a well-studied example is the Drosophila protein decapentaplegic (DPP) acting in the wing disc. Recent work has established that bone morphogenetic protein 4 (BMP4), the vertebrate homologue of DPP, controls the fundamental choice between neural and epidermal fates in the vertebrate ectoderm, under the control of antagonists secreted by the organizer region of the mesoderm. We now show that BMP4 can act as a morphogen, evoking distinct responses in Xenopus ectodermal cells at high and low concentrations, in a pattern consistent with the positions of the corresponding cell types in the embryo. Moreover, this complex cellular response to extracellular BMP4 concentration does not require subsequent cell-cell communication and is thus direct, as required of a classical morphogen. We also show that the same series of cell types--epidermis, cement gland and neural tissue--can be produced by progressively inhibiting endogenous BMP signaling with specific antagonists, including the organizer factor noggin. Finally, expression of increasing doses of the signal transduction molecule Smad1 accurately reproduces the response to BMP4 protein. Since Smads have been shown to act in the nucleus, this finding implies a direct translation of extracellular morphogen concentration into transcription factor activity. We propose that a graded distribution of BMP activity controls the specification of several cell types in the gastrula ectoderm and that this extracellular gradient acts by establishing an intracellular and then nuclear gradient of Smad activity.

REFERENCES

REFERENCES
Bolce
M. E.
,
Hemmati-Brivanlou
A.
,
Kushner
P. D.
,
Harland
R. M.
(
1992
)
Ventral ectoderm of Xenopus forms neural tissue, including hindbrain, in response to activin.
Development
115
,
681
688
Bradley
L.
,
Wainstock
D.
,
Sive
H.
(
1996
)
Positive and negative signals modulate formation of the Xenopus cement gland.
Development
122
,
2739
2750
Chen
X.
,
Rubock
M. J.
,
Whitman
M.
(
1996
)
A transcriptional partner for MAD proteins in TGF-beta signalling.
Nature
383
,
691
696
Dickinson
M. E.
,
Selleck
M. A. J.
,
McMahon
A. P.
,
Bronner-Fraser
M.
(
1995
)
Dorsalization of the neural tube by the non-neural ectoderm.
Development
121
,
2099
2106
Doniach
T.
(
1995
)
Basic FGF as an inducer of anteroposterior neural pattern.
Cell
83
,
1067
70
Drysdale
T.
,
Elinson
R. P.
(
1993
)
Inductive events in the patterning of the Xenopus laevis hatching and cement glands, two cell types which delimit head boundaries.
Dev. Biol
158
,
245
253
Essex
L. J.
,
Mayor
R. M.
,
Sargent
M. G.
(
1993
)
Expression of Xenopus snail in mesoderm and prospective neural fold ectoderm.
Devel. Dynamics
198
,
108
122
Ferguson
E.
,
Anderson
K.
(
1992
)
Decapentaplegic acts as a morphogen to organize dorsal-ventral pattern in the Drosophila embryo.
Cell
71
,
451
461
Graff
J.
,
Thies
R. S.
,
Song
J. J.
,
Celeste
A. J.
,
Melton
D. A.
(
1994
)
Studies with a Xenopus BMP receptor suggest that ventral mesoderm-inducing signals override dorsal signals in vivo.
Cell
79
,
169
179
Graff
J. M.
,
Bansal
A.
,
Melton
D. A.
(
1996
)
Xenopus Mad proteins transduce distinct subsets of signals for the TGFβ superfamily.
Cell
85
,
479
487
Grant
P.
,
Wacaster
J. F.
(
1972
)
The amphibian grey crescent—a site of developmental information?.
Dev. Biol
28
,
454
471
Green
J. B. A.
,
New
H. V.
,
Smith
J. C.
(
1992
)
Responses of embryonic Xenopus cells to activin and FGF are separated by multiple dose thresholds and correspond to distinct axes of the mesoderm.
Cell
71
,
731
739
Green
J. B. A.
,
Howes
G.
,
Symes
K.
,
Cooke
J.
,
Smith
J. C.
(
1990
)
The biological effects of XTC-MIF: quantitative comparison with Xenopus bFGF.
Development
108
,
173
183
Green
J. B. A.
,
Smith
J. C.
(
1990
)
Graded changes in dose of a Xenopus activin A homologue elicit stepwise transitions in embryonic cell fate.
Nature
347
,
391
394
Gurdon
J. B.
,
Harger
P.
,
Mitchell
A.
,
Lemaire
P.
(
1994
)
Activin signalling and response to a morphogen gradient.
Nature
371
,
487
492
Gurdon
J. B.
,
Mitchell
A.
,
Mahony
D.
(
1995
)
Direct and continuous assessment by cells of their position in a morphogen gradient.
Nature
376
,
520
1
Hawley
S. H. B.
,
Wunnenberg-Stapleton
K.
,
Hashimoto
C.
,
Laurent
M. N.
,
Watabe
T.
,
Blumberg
B. W.
,
Cho
K. W. Y.
(
1995
)
Disruption of BMP signals in embryonic Xenopus ectoderm leads to direct neural induction.
Genes Dev
9
,
2923
2935
Hoodless
P. A.
,
Haerry
T.
,
Abdollah
S.
,
Stapleton
M.
,
O'Connor
M. B.
,
Attisano
L.
,
Wrana
J. L.
(
1996
)
MADR1, a MAD-related protein that functions in BMP2 signalling pathways.
Cell
85
,
489
500
Jonas
E.
,
Sargent
T. D.
,
Dawid
I. B.
(
1985
)
Epidermal keratin gene expressed in embryos of Xenopus laevis.
Proc. Natl. Acad. Sci. USA
82
,
5413
5417
Kao
K.
,
Elinson
R.
(
1988
)
The entire mesodermal mantle behaves as a Spemann organizer in dorsoanterior enhanced Xenopus embryos.
Dev. Biol
127
,
64
77
Kintner
C. R.
,
Melton
D. A.
(
1987
)
Expression of Xenopus N-CAM RNA in ectoderm is an early response to neural induction.
Development
99
,
311
325
Krieg
P.
,
Varnum
S.
,
Wormington
M.
,
Melton
D. A.
(
1989
)
The mRNA encoding elongation factor 1(EF1) is a major transcript at the mid blastula transition in Xenopus.
Dev. Biol
133
,
93
100
Lawrence
P. A.
(
1966
)
Gradients in the insect segment: the orientation of hairs in the milkweed bug Oncopeltus fasciatus.
J. Exp. Biol
44
,
607
620
Lecuit
T.
,
Brook
W. J.
,
Ng
M.
,
Calleja
M.
,
Sun
H.
,
Cohen
S. M.
(
1996
)
Two distinct mechanisms for long-range patterning by Decapentaplegic in the Drosophila wing.
Nature
381
,
387
393
Liem
K. F.
,
Tremml
G.
,
Roelink
H.
,
Jessell
T. M.
(
1995
)
Dorsal differentiation of neural plate cells induced by BMP-mediated signals form epidermal ectoderm.
Cell
82
,
969
79
Liu
F.
,
Hata
A.
,
Baker
J.
,
Doody
J.
,
Cárcamo
J.
,
Harland
R.
,
Massague
J.
(
1996
)
A human Mad protein acting as a BMP-regulated transcriptional activator.
Nature
381
,
62
623
London
C.
,
Akers
T.
,
Phillips
C. R.
(
1988
)
Expression of Epi1, an epidermal specific marker, in Xenopus laevis embryos is specified prior to gastrulation.
Dev. Biol
129
,
380
389
Mancilla
A.
,
Mayor
R.
(
1996
)
Neural crest formation in Xenopus laevis: mechanisms of Xslug induction.
Dev. Biol
177
,
580
589
Mayor
R.
,
Morgan
R.
,
Sargent
M. G.
(
1995
)
Induction of the prospective neural crest of Xenopus.
Development
121
,
767
777
Moury
J. M.
,
Jacobson
A. G.
(
1990
)
The origins of neural crest cells in the Axolotl.
Dev. Biol
141
,
243
253
Nellen
D.
,
Burke
R.
,
Struhl
G.
,
Basler
K.
(
1996
)
Direct and long-range action of a DPP morphogen gradient.
Cell
85
,
357
368
Piccolo
S.
,
Sasai
Y.
,
Lu
B.
,
De Robertis
E. M.
(
1996
)
Dorsoventral patterning in Xenopus: inhibition of ventral signals by direct binding of chordin to BMP4.
Cell
86
,
589
598
Reilly
K. M.
,
Melton
D. A.
(
1996
)
Short-range signaling by candidate morphogens of the TGF-beta family and evidence for a relay mechanism of induction.
Cell
86
,
743
754
Sargent
T. D.
,
Jamrich
M.
,
Dawid
I. B.
(
1986
)
Cell interactions and the control of gene activity during early development of Xenopus laevis.
Dev. Biol
114
,
238
246
Sasai
Y.
,
Lu
B.
,
Steinbeisser
H.
,
De Robertis
E. M.
(
1995
)
Regulation of neural induction by the Chd and Bmp-4 antagonistic patterning signals in Xenopus.
Nature
376
,
333
336
Sharpe
C. R.
,
Fritz
A.
,
De Robertis
E. M.
,
Gurdon
J. B.
(
1987
)
A homeobox-containing marker of posterior neural differentiation shows the importance of predetermination in neural induction.
Cell
50
,
749
758
Sive
H.
,
Bradley
L.
(
1996
)
A sticky problem—the Xenopus cement gland as a paradigm for anteroposterior patterning.
Devel. Dynamics
205
,
265
280
Smith
J. C.
,
Price
B. M.
,
Green
J. B.
,
Weigel
D.
,
Herrmann
B. G.
(
1991
)
Expression of a Xenopus homolog of Brachyury (T) is an immediate-early response to mesoderm induction.
Cell
67
,
79
87
Smith
W. B.
,
Harland
R. M.
(
1992
)
Expression Cloning of noggin, a New Dorsalizing Factor Localized to the Spemann Organizer in Xenopus Embryos.
Cell
70
,
829
840
Sokol
S.
,
Melton
D. A.
(
1991
)
Pre-existent pattern in Xenopus animal pole cells revealed by induction with activin.
Nature
351
,
409
411
Suzuki
A.
,
Chang
C.
,
Yingling
M.
,
Wang
X.-F.
,
Hemmati-Brivanlou
A.
(
1997
)
Smad5 induces ventral fates in Xenopus embryo.
Dev. Biol
184
,
402
405
Suzuki
A.
,
Shioda
N.
,
Ueno
N.
(
1995
)
Bone morphogenetic protein acts as a ventral mesoderm modifier in early Xenopus embryos.
Develop. Growth Differ
37
,
581
588
Suzuki
A.
,
Theis
R. S.
,
Yamaji
N.
,
Song
J. J.
,
Wozney
J.
,
Murakami
K.
,
Ueno
N.
(
1994
)
A truncated BMP receptor affects dorsal-ventral patterning in the early Xenopus embryo.
Proc. Natl. Acad. Sci. USA
91
,
10255
1259
Thomsen
G.
(
1996
)
Xenopus mothers against decapentaplegic is an embryonic ventralizing agent that acts downstream of the BMP-2/4 receptor.
Development
122
,
2359
2366
Turing
A.
(
1952
)
The chemical basis of morphogenesis.
Philos. Trans. R. Soc. Lond
237
,
37
72
Weinstein
D. C.
,
Hemmati-Brivanlou
A.
(
1997
)
Neural induction in Xenopus laevis; evidence for the default model.
Current Opinion in Neurobiology
7
,
7
12
Wharton
K. A.
,
Ray
R. P.
,
Gelbart
W. M.
(
1993
)
An activity gradient of decapentaplegic is necessary for the specification of dorsal pattern elements in the Drosophila embryo.
Development
117
,
807
822
Wilson
P. A.
,
Hemmati-Brivanlou
A.
(
1995
)
Induction of epidermis and inhibition of neural fate by Bmp-4.
Nature
376
,
331
333
Wilson
P. A.
,
Melton
D. A.
(
1994
)
Mesodermal patterning by an inducer gradient depends on secondary cell-cell communication.
Current Biology
4
,
676
686
Wolpert
L.
(
1969
)
Positional information and the spatial pattern of cellular differentiation.
J. Theor. Biol
25
,
1
47
Xu
R. H.
,
Kim
J.
,
Taira
M.
,
Zhan
S.
,
Sredni
D.
,
Kung
H. F.
(
1995
)
A dominant-negative bone morphogenetic protein 4 receptor causes neuralization in Xenopus ectoderm.
Biochem. Biophys. Res. Commun
212
,
212
219
Yamashita
H.
,
ten Dijke
P.
,
Huylebroeck
D.
,
Sampath
T. K.
,
Andries
M.
,
Smith
J. C.
,
Heldin
C.-H.
,
Miyazono
K.
(
1995
)
Osteogenic protein-1 binds to activin type II receptors and induces certain activin-like effects.
J. Cell Biol
130
,
217
226
Zimmerman
L. B.
,
De Jesus-Escobar
J. M.
,
Harland
R. M.
(
1996
)
The Spemann organizer signal noggin binds and inactivates bone morphogenetic protein 4.
Cell
86
,
599
606
This content is only available via PDF.