The primordia for heart, fat body, and visceral and somatic muscles arise in specific areas of each segment in the Drosophila mesoderm. We show that the primordium of the somatic muscles, which expresses high levels of twist, a crucial factor of somatic muscle determination, is lost in sloppy-paired mutants. Simultaneously, the primordium of the visceral muscles is expanded. The visceral muscle and fat body primordia require even-skipped for their development and the mesoderm is thought to be unsegmented in even-skipped mutants. However, we find that even-skipped mutants retain the segmental modulation of the expression of twist. Both the domain of even-skipped function and the level of twist expression are regulated by sloppy-paired. sloppy-paired thus controls segmental allocation of mesodermal cells to different fates.
Control of cell fates and segmentation in the Drosophila mesoderm
V. Riechmann, U. Irion, R. Wilson, R. Grosskortenhaus, M. Leptin; Control of cell fates and segmentation in the Drosophila mesoderm. Development 1 August 1997; 124 (15): 2915–2922. doi: https://doi.org/10.1242/dev.124.15.2915
Download citation file:
Advertisement
Cited by
Development Journal Meeting 2022: From Stem Cells to Human Development
-JournalMeeting.png?versionId=3939)
Following a virtual meeting in 2020, we are delighted to announce that the fifth iteration of our popular Journal Meeting will be held from 11-14 September 2022 at the historic Wotton House, Surrey. Registration is open now.
Preprints in Development
(update)-InPreprints.png?versionId=3939)
As part of our efforts to support the use of preprints and help curate the preprint literature, we are delighted to launch a new article type: ‘In preprints’. These pieces will discuss one or more recent preprints and place them in a broader context.
Submit your next Techniques and Resources paper to Development
-TechniquesAndResources.png?versionId=3939)
Development regularly publishes Techniques and Resources papers. These manuscripts describe a novel technique, a substantial advance of an existing technique, or a new resource that will have a significant impact on developmental biology research. Find out more here.
Transitions in development: Rashmi Priya
(update)-RashmiPriya.png?versionId=3939)
Rashmi Priya’s research group uses the zebrafish heart as a model system to understand the complex morphogenetic events of organogenesis. We interviewed Rashmi to learn about her career path so far, and to discuss the challenges of starting a lab in the middle of a global pandemic.
The Node Network
-NodeNetwork.png?versionId=3939)
The Node Network is a global directory of developmental and stem cell biologists, designed to help you find speakers, referees, panel members and potential collaborators. Find out more about the Node Network.