Cone cells are lens-secreting cells in ommatidia, the unit eyes that compose the compound eye of Drosophila. Each ommatidium contains four cone cells derived from precursor cells of the R7 equivalence group which express the gene sevenless (sev). When a constitutively active form of Ras1 (Ras1V12) is expressed in the R7 equivalence group cells using the sev promoter (sev-Ras1V12), additional cone cells are formed in the ommatidium. Expression of Ras1N17, a dominant negative form of Ras1, results in the formation of 1–3 fewer cone cells than normal in the ommatidium. The effects of Ras1 variants on cone cell formation are modulated by changing the gene dosage at the canoe (cno) locus, which encodes a cytoplasmic protein with Ras-binding activity. An increase or decrease in gene dosage potentiates the sev-Ras1v12 action, leading to marked induction of cone cells. A decrease in cno+ activity also enhances the sev-Ras1N17 action, resulting in a further decrease in the number of cone cells contained in the ommatidium. In the absence of expression of sev-Ras1V12 or sev-Ras1N17, an overdose of wild-type cno (cno+) promotes cone cell formation while a significant reduction in cno+ activity results in the formation of 1–3 fewer cone cells than normal in the ommatidium. We propose that there are two signaling pathways in cone cell development, one for its promotion and the other for its repression, and Cno functions as a negative regulator for both pathways. We also postulate that Cno predominantly acts on a prevailing pathway in a given developmental context, thereby resulting in either an increase or a decrease in the number of cone cells per ommatidium. The extra cone cells resulting from the interplay of Ras1v12 and Cno are generated from a pool of undifferentiated cells that are normally fated to develop into pigment cells or undergo apoptosis.
Regulation of cone cell formation by Canoe and Ras in the developing Drosophila eye
T. Matsuo, K. Takahashi, S. Kondo, K. Kaibuchi, D. Yamamoto; Regulation of cone cell formation by Canoe and Ras in the developing Drosophila eye. Development 15 July 1997; 124 (14): 2671–2680. doi: https://doi.org/10.1242/dev.124.14.2671
Download citation file:
Advertisement
Cited by
Development Journal Meeting 2022: From Stem Cells to Human Development
-JournalMeeting.png?versionId=3939)
Following a virtual meeting in 2020, we are delighted to announce that the fifth iteration of our popular Journal Meeting will be held from 11-14 September 2022 at the historic Wotton House, Surrey. Registration is open now.
Preprints in Development
(update)-InPreprints.png?versionId=3939)
As part of our efforts to support the use of preprints and help curate the preprint literature, we are delighted to launch a new article type: ‘In preprints’. These pieces will discuss one or more recent preprints and place them in a broader context.
Submit your next Techniques and Resources paper to Development
-TechniquesAndResources.png?versionId=3939)
Development regularly publishes Techniques and Resources papers. These manuscripts describe a novel technique, a substantial advance of an existing technique, or a new resource that will have a significant impact on developmental biology research. Find out more here.
Transitions in development: Rashmi Priya
(update)-RashmiPriya.png?versionId=3939)
Rashmi Priya’s research group uses the zebrafish heart as a model system to understand the complex morphogenetic events of organogenesis. We interviewed Rashmi to learn about her career path so far, and to discuss the challenges of starting a lab in the middle of a global pandemic.
The Node Network
-NodeNetwork.png?versionId=3939)
The Node Network is a global directory of developmental and stem cell biologists, designed to help you find speakers, referees, panel members and potential collaborators. Find out more about the Node Network.