Segregation of a single neural precursor from each proneural cluster in Drosophila relies on Notch-mediated lateral signalling. Studies concerning the spacing of precursors for the microchaetes of the peripheral nervous system suggested the existence of a regulatory loop between Notch and its ligand Delta within each cell that is under transcriptional control. Activation of Notch leads to repression of the achaete-scute genes which themselves regulate transcription of Delta, perhaps directly. Here we have tested a requirement for transcriptional regulation of Notch and/or Delta during neuroblast segregation in embryos, by providing Notch and Delta ubiquitously at uniform levels. Neuroblast segregation occurs normally under conditions of uniform Notch expression. Under conditions of uniform Delta expression, a single neuroblast segregates from each proneural group in 80% of the cases, more than one in the remaining 20%. Thus transcriptional regulation of Delta is largely dispensable. We discuss the possibility that segregation of single precursors in the central nervous system may rely on a heterogeneous distribution of neural potential between different cells of the proneural group. Notch signalling would enable all cells to mutually repress each other and only a cell with an elevated neural potential could overcome this repression.

Artavanis-Tsakonas
S.
,
Matsuno
K.
,
Fortini
M.E.
(
1995
)
Notch signaling.
Science
268
,
225
232
Axelrod
J. D.
,
Matsuno
K.
,
Artavanis-tsakonas
S.
,
Perrimon
N.
(
1996
)
Interaction beetween wingless and Notch signaling pathways mediated by dishevelled.
Science
271
,
1826
1832
Baker
N.E.
,
Mlodzik
M.
,
Rubin
G.M.
(
1990
)
Spacing differentiation in the developing Drosophila eye: a fibrinogen-related lateral inhibitor encoded by scabrous.
Science
250
,
1370
1377
Brand
H. A.
,
Perrimon
N.
(
1993
)
Targeted gene expression as a mean of altering cell fates and generating dominant phenotypes.
Development
118
,
401
415
Broadus
J.
,
Doe
C. Q.
(
1995
)
Evolution of neuroblast identity: seven-up and prospero expression reveal homologous and divergent neuroblast fates in Drosophila and Schistocerca.
Development
121
,
3989
3996
Campuzano
S.
,
Modolell
J.
(
1992
)
Patterning of the Drosophila nervous system: the achaete-scute gene complex.
Trends Genet
8
,
202
208
Christensen
S.
,
Kodoyianni
V.
,
Bosenberg
M.
,
Friedman
L.
,
Kimble
J.
(
1996
)
lag-1, a gene required for lin-12 and glp-1 signaling in Caenorhabditis elegans, is homologous to human CBF1 and Drosophila Su(H).
Development
122
,
1373
1383
Chu-LaGraff
Q.
,
Doe
C. Q.
(
1993
)
Neuroblast Specification and Formation Regulated by wingless in the Drosophila CNS.
Science
261
,
1594
1597
Cubas
P.
,
de Celis
J.-F.
,
Campuzano
S.
,
Modolell
J.
(
1991
)
Proneural clusters of achaete/scute expression and the generation of sensory organs in the Drosophila imaginal wing disc.
Genes Dev
5
,
996
1008
Cubas
P.
,
Modolell
J.
(
1992
)
The extramacrochaetae gene provides information for sensory organ patterning.
EMBO J
11
,
3385
3393
Doe
C. Q.
(
1992
)
Molecular markers for identified neuroblasts and ganglion mother cells in the Drosophila central nervous sytem.
Development
116
,
855
863
Doe
C. Q.
,
Goodman
C. S.
(
1985
)
Early events in insect neurogenesis. II. The role of cell interactions and cell lineage in the determination of neuronal precursor cells.
Dev. Biol
111
,
206
219
Fehon
R. G.
,
Johansen
K.
,
Rebay
I.
,
Artavanis-Tsakonas
S.
(
1991
)
Complex cellular and subcellular regulation of Notch expression during embryonic and imaginal development of Drosophila: Implications for Notch function.
J. Cell Biol
113
,
657
669
Gho
M.
,
Lecourtois
M.
,
Geraud
G.
,
Posakony
J. A.
,
Schweisguth
F.
(
1996
)
Subcellular localization of Suppressor of Hairless in Drosophila sense organ cells during Notch signalling.
Development
122
,
1673
82
Ghysen
A.
,
Dambly-Chaudiere
C.
,
Jan
L. Y.
,
Jan
Y. N.
(
1993
)
Cell interactions and gene interactions in peripheral neurogenesis.
Genes Dev
7
,
723
733
Goriely
A.
,
Dumont
N.
,
Dambly-Chaudiere
C.
,
Ghysen
A.
(
1991
)
The determination of sense organs in Drosophila: effect of the neurogenic mutations in the embryo.
Development
113
,
1395
1404
Gu
Y.
,
Hukriede
N. A.
,
Fleming
R. J.
(
1995
)
Serrate expression can functionally replace Delta during neuroblast segregation in the Drosophila embryo.
Development
121
,
855
865
Heitzler
P.
,
Simpson
P.
(
1993
)
Altered epidermal growth factor-like sequences provide evidence for a role of Notch as a receptor in cell fate decisions.
Development
117
,
1113
1123
Heitzler
P.
,
Bourouis
M.
,
Ruel
L.
,
Carteret
C.
,
Simpson
P.
(
1996
)
Genes of the Enhancer of split and achaete-scute complexes are required fora regulatory loop between Notch and Delta during lateral signaling in drosophila.
Development
122
,
161
171
Hinz
U.
,
Giebel
B.
,
Campos-Ortega
J.
(
1994
)
The basic helix-loop-helix domain of Drosophila lethal of scute protein is sufficient for proneural function and activates neurogenic genes.
Cell
76
,
77
87
Horvitz
H. R.
,
Sternberg
P. W.
(
1991
)
Multiple intercellular signalling systems control the development of the Caenorhabditiselegans vulva.
Nature
351
,
535
541
Kooh
P.J.
,
Fehon
R. G.
,
Muskavitch
M.A.T.
(
1993
)
Implications of dynamic patterns of Delta and Notch expression for cellular interactions during Drosophila development.
Development
117
,
493
507
Kunisch
M.
,
Haenlin
M.
,
Campos-Ortega
J. A.
(
1994
)
Lateral inhibition mediated by the Drosophila neurogenic gene Delta is enhanced by proneural proteins.
Proc. Natn. Acad. Sci. USA
91
,
10139
10143
LaBonne
S. G.
,
Sunitha
I.
,
Mahowald
A. P.
(
1989
)
Molecular genetics of pecanex, a maternal-effect neurogenic locus of Drosophila melanogaster that potentially encodes a large transmembrane protein.
Dev. Biol
136
,
1
16
Lieber
T.
,
Kidd
S.
,
Alcamo
E.
,
Corbin
V.
,
Young
M. W.
(
1993
)
Antineurogenic phenotypes induced by truncated Notch proteins indicate a role in signal transduction and may point to a novel function for Notch in nuclei.
Genes Dev
7
,
1949
1965
Martin-Bermudo
M. D.
,
Carmena
A.
,
Rodriguez
A.
,
Jimenez
F.
(
1995
)
Neurogenic genes control gene expression at the transcriptinal level in early neurogenesis and in the mesectoderm specification.
Development
121
,
219
224
Menne
T. V.
,
Klämbt
C.
(
1994
)
The formation of commissures in the Drosophila CNS depends on the midline cells and on the Notch gene.
Development
120
,
123
33
Mlodzik
M.
,
Baker
N. E.
,
Rubin
G. M.
(
1990
)
Isolation and expression of scabrous, a gene regulating neurogenesis in Drosophila.
Genes Dev
4
,
1848
1861
Muskavitch
M. A. T.
(
1994
)
Delta-Notch signaling and Drosophila cell fate choice.
Dev. Biol
166
,
415
430
Nakao
K.
,
Campos-Ortega
J. A.
(
1996
)
Persistent expression of the Enhancer of split-complex suppresses neural development in Drosophila.
Neuron
16
,
275
286
Phillips
R. G.
,
Whittle
J. R. S.
(
1993
)
wingless expression mediates determination of peripheral nervous system elements in late stages of Drosophila wing disc development.
Development
118
,
427
438
Pirrotta
V.
(
1988
)
Vectors for P-mediated transformation in Drosophila.
Biotechnology
10
,
437
456
Rao
Y.
,
Bodmer
R.
,
Jan
L. Y.
,
Jan
Y. N.
(
1992
)
The big brain gene of Drosophila functions to control the number of neuronal precursors in the peripheral nervous system.
Development
116
,
31
40
Rao
Y.
,
Jan
L. Y.
,
Jan
Y. N.
(
1990
)
Similarity of the product of the Drosophila neurogenic gene big brain to transmembrane channel proteins.
Nature
345
,
163
167
Rebay
I.
,
Fehon
R. G.
,
Artavanis-Tsakonas
S.
(
1993
)
Specific truncations of Drosophila Notch define dominant activated and dominant negative forms of the receptor.
Cell
74
,
319
329
Roark
M.
,
Sturtevant
M.A.
,
Emery
J.
,
Vaessin
H.
,
Grell
E.
,
Bier
E.
(
1995
)
scratch, a pan-neural gene encoding a zinc finger protein related to snail, promotes neuronal development.
Genes Dev
9
,
2384
2398
Rooke
J.
,
Pan
D.
,
Xu
T.
,
Rubin
G. M.
(
1996
)
KUZ, a conserved metallprotease-disintegrin protein with two roles in Drosophila neurogenesis.
Science
273
,
1227
1231
Seydoux
G.
,
Greenwald
I.
(
1989
)
Cell autonomy of lin-12 function in a cell fate decision in C. elegans.
Cell
57
,
1237
1245
Skeath
J. B.
,
Carroll
S. B.
(
1992
)
Regulation of proneural gene expression and cell fate during neuroblast segregation in the Drosophila embryo.
Development
114
,
939
946
Speicher
S. A.
,
Thomas
U.
,
Hinz
U.
,
Knust
E.
(
1994
)
The Serrate locus of Drosophila and its role in morphogenesis of wing imaginal discs: control of cell proliferation.
Development
120
,
535
544
Struhl
G.
,
Fitzgerald
K.
,
Greenwald
I.
(
1993
)
Intrinsic activity of the lin-12 and Notch intracellular domains in vivo.
Cell
74
,
331
345
Taghert
P. H.
,
Doe
C. Q.
,
Goodman
C. S.
(
1984
)
Cell determination and regulation during development of neuroblasts and neurones in grasshopper embryos.
Nature
307
,
163
165
Thomas
U.
,
Speicher
S. A.
,
Knust
E.
(
1991
)
The Drosophila gene Serrate encodes an EGF-like transmembrane protein with a complex expression pattern in embryos and wing discs.
Development
111
,
749
761
Tora
L.
,
White
J.
,
Brou
C.
,
Tasset
D.
,
Webster
N.
,
Scheer
E.
,
Chambon
P.
(
1989
)
The human estrogen receptor has two independent nonacidic transcriptional activation functions.
Cell
59
,
477
487
Vässin
H.
,
Bremer
K. A.
,
Knust
E.
,
Campos-Ortega
J. A.
(
1987
)
The neurogenic gene Delta of Drosophila melanogaster is expressed in neurogenic territories and encodes a putative transmembrane protein with EGF-like repeats.
EMBO J
6
,
3433
3440
Vincent
J. P.
,
Girdham
C. H.
,
O'Farrell
P. H.
(
1994
)
A cell-autonomous, ubiquitous marker for the analysis of Drosophila genetic mosaics.
Dev. Biol
164
,
328
331
Wilkinson
H.A.
,
Fitzgerald
K.
,
Greenwald
I.
(
1994
)
Reciprocal changes in expression of the receptor lin-12 and its ligand lag-2 prior to commitment in a C. elegans cell fate decision.
Cell
79
,
1187
1198
Wilkinson
H. A.
,
Greenwald
I.
(
1995
)
Spatial and temporal patterns of lin-12 expression during C. elegans hermaphrodite development.
Genetics
141
,
513
526
Zipursky
S. L.
,
Venkatesh
T. R.
,
Teplow
D. B.
,
Benzer
S.
(
1984
)
Neuronal development in the Drosophila retina: monoclonal antibodies as molecular probes.
Cell
36
,
15
26
This content is only available via PDF.