Whereas the hermaphrodite gonad of Caenorhabditis elegans has two symmetric arms (didelphy), the female/hermaphrodite gonad of many nematode species features a single anterior arm (monodelphy). We examined how gonadal cell lineages and intercellular signalling evolve to generate these diverse structures. In C. elegans, the two arms develop symmetrically from two somatic precursor cells, Z1 (anterior) and Z4 (posterior). Each first gives rise to one distal tip cell (which promotes arm growth and germ line proliferation), two ovary precursors and three uterine precursors in the center of the developing gonad. In monodelphic species, Z1 and Z4 have different fates. The first visible asymmetry between them is in the relative timing of their divisions, followed by asymmetric cell movements. The putative posterior distal tip cell is then eliminated in all but one species by programmed cell death. In some species the posterior ovary precursors form a small vestigial posterior arm, the post-vulval sac; in other species, they stay undivided, or die. In Cephalobus sp. PS1197, the specific fate of Z4 progeny is induced by Z1 (or its daughters). In the uterus in C. elegans, symmetric lateral signalling between Z1.ppp and Z4.aaa renders them equally likely to become the anchor cell, which links the uterus to the vulva. In the different monodelphic species, anchor cell specification is biased, or fully fixed, to a descendant of either Z1 or Z4. Replacement regulation upon anchor cell ablation is conserved in some species, but lost in others, leading to a mosaic-type development. Differentiation between Z1 and Z4 is thus manifested at this later stage in the breakage of symmetry of cell interactions in the ventral uterus.
Symmetry breakage in the development of one-armed gonads in nematodes
M.A. Felix, P.W. Sternberg; Symmetry breakage in the development of one-armed gonads in nematodes. Development 1 July 1996; 122 (7): 2129–2142. doi: https://doi.org/10.1242/dev.122.7.2129
Download citation file:
Advertisement
Cited by
Pathway to Independence programme

We’re excited to announce our new Pathway to Independence programme, aimed at supporting postdocs as they go on the job market. Find out more about the scheme in our Editorial.
Call for papers: Metabolic and Nutritional Control of Development and Regeneration

We are welcoming submissions for our next special issue, which will focus on metabolic and nutritional control of development and regeneration. Submission deadline: 15 May 2023.
Webinar: Increasing the visibility and impact of your research
-HUBSwebinar.jpg?versionId=4486)
Would you like to increase the visibility and impact of your research and raise your profile internationally? If so, register for the very practical webinar we are running in association with HUBS on 23 February 2023.
Transitions in development: Daniel Grimes

Daniel Grimes’s lab studies the consequences of ciliary mutations, including left-right patterning defects and scoliosis. We interviewed Daniel to find out more about his career path, his experience of becoming a group leader and the influence of Jurassic Park.
Preprints in Development
(update)-InPreprints.png?versionId=4486)
As part of our efforts to support the use of preprints and help curate the preprint literature, we are delighted to launch a new article type: ‘In preprints’. These pieces will discuss one or more recent preprints and place them in a broader context.