Fibroblast Growth Factors (FGFs) are signaling molecules that are important in patterning and growth control during vertebrate limb development. Beads soaked in FGF-1, FGF-2 and FGF-4 are able to induce additional limbs when applied to the flank of young chick embryos (Cohn, M.J., Izpisua-Belmonte, J-C., Abud, H., Heath, J. K., Tickle, C. (1995) Cell 80, 739–746). However, biochemical and expression studies suggest that none of these FGFs is the endogenous signal that initiates limb development. During chick limb development, Fgf-8 transcripts are detected in the intermediate mesoderm and subsequently in the prelimb field ectoderm prior to the formation of the apical ectodermal ridge, structures required for limb initiation and outgrowth, respectively. Later on, Fgf-8 expression is restricted to the ridge cells and expression disappears when the ridge regresses. Application of FGF-8 protein to the flank induces the development of additional limbs. Moreover, we show that FGF-8 can replace the apical ectodermal ridge to maintain Shh expression and outgrowth and patterning of the developing chick limb. Furthermore, continuous and widespread misexpression of FGF-8 causes limb truncations and skeletal alterations with phocomelic or achondroplasia phenotype. Thus, FGF-8 appears to be a key signal involved in initiation, outgrowth and patterning of the developing vertebrate limb.
Involvement of FGF-8 in initiation, outgrowth and patterning of the vertebrate limb
A. Vogel, C. Rodriguez, J.C. Izpisua-Belmonte; Involvement of FGF-8 in initiation, outgrowth and patterning of the vertebrate limb. Development 1 June 1996; 122 (6): 1737–1750. doi: https://doi.org/10.1242/dev.122.6.1737
Download citation file:
Advertisement
Cited by
Development Journal Meeting 2022: From Stem Cells to Human Development
-JournalMeeting.png?versionId=3939)
Following a virtual meeting in 2020, we are delighted to announce that the fifth iteration of our popular Journal Meeting will be held from 11-14 September 2022 at the historic Wotton House, Surrey. Registration is open now.
Preprints in Development
(update)-InPreprints.png?versionId=3939)
As part of our efforts to support the use of preprints and help curate the preprint literature, we are delighted to launch a new article type: ‘In preprints’. These pieces will discuss one or more recent preprints and place them in a broader context.
Submit your next Techniques and Resources paper to Development
-TechniquesAndResources.png?versionId=3939)
Development regularly publishes Techniques and Resources papers. These manuscripts describe a novel technique, a substantial advance of an existing technique, or a new resource that will have a significant impact on developmental biology research. Find out more here.
Transitions in development: Rashmi Priya
(update)-RashmiPriya.png?versionId=3939)
Rashmi Priya’s research group uses the zebrafish heart as a model system to understand the complex morphogenetic events of organogenesis. We interviewed Rashmi to learn about her career path so far, and to discuss the challenges of starting a lab in the middle of a global pandemic.
The Node Network
-NodeNetwork.png?versionId=3939)
The Node Network is a global directory of developmental and stem cell biologists, designed to help you find speakers, referees, panel members and potential collaborators. Find out more about the Node Network.