The appearance of the embryonic shield, a slight thickening at the leading edge of the blastoderm during the formation of the germ ring, is one of the first signs of dorsoventral polarity in the zebrafish embryo. It has been proposed that the shield plays a role in fish embryo patterning similar to that attributed to the amphibian dorsal lip. In a recent study, we fate mapped many of the cells in the region of the forming embryonic shield, and found that neural and mesodermal progenitors are intermingled (Shih, J. and Fraser, S.E. (1995) Development 121, 2755–2765), in contrast to the coherent region of mesodermal progenitors found at the amphibian dorsal lip. Here, we examine the fate and the inductive potential of the embryonic shield to determine if the intermingling reflects a different mode of embryonic patterning than that found in amphibians. Using the microsurgical techniques commonly used in amphibian and avian experimental embryology, we either grafted or deleted the region of the embryonic shield. Homotopic grafting experiments confirmed the fates of cells within the embryonic shield region, showing descendants in the hatching gland, head mesoderm, notochord, somitic mesoderm, endoderm and ventral aspect of the neuraxis. Heterotopic grafting experiments demonstrated that the embryonic shield can organize a second embryonic axis; however, contrary to our expectations based on amphibian research, the graft contributes extensively to the ectopic neuraxis. Microsurgical deletion of the embryonic shield region at the onset of germ ring formation has little effect on neural development: embryos with a well-formed and well-patterned neuraxis develop in the complete absence of notochord cells. While these results show that the embryonic shield is sufficient for ectopic axis formation, they also raise questions concerning the necessity of the shield region for neural induction and embryonic patterning after the formation of the germ ring.

Reference

Ang
S.-L.
,
Rossant
J.
(
1994
)
HNF3β is essential for node and notochord formation in mouse development.
Cell
78
,
561
574
Beddington
R. S. P.
(
1994
)
Induction of a second neural axis by the mouse node.
Development
120
,
613
620
Clarke
J. D. W.
,
Holder
N.
,
Soffe
S. R.
,
Strome-Methisen
J.
(
1991
)
Neuroanatomical and functional analysis of neural tube formation in notochordless Xenopus embryos; laterality of the ventral spinal cord is lost.
Development
112
,
499
516
Domingo
C.
,
Keller
R. E.
(
1995
)
Induction of notochord cell intercalation behavior and differentiation by progressive signals in the gastrula of Xenopus laevis.
Development
121
,
3311
3321
Doniach
T.
(
1992
)
Planar induction of Anteroposterior Pattern in the Central Nervous System of Xenopus laevis.
Science
257
,
542
545
Grabowski
C. T.
(
1956
)
The effects of the excision of Hensen's node on the early development of the chick embryo.
J. Exp. Zool
133
,
301
343
Ho
R. K.
,
Kimmel
C. B.
(
1993
)
Commitment of cell fate in the early zebrafish embryo.
Science
261
,
109
11
Inagaki
T.
,
Schoenwolf
G. C.
(
1993
)
Axis development in avian embryos: the ability of Hensen's node to self-differentiate, as analyzed with heterochronic grafting experiments.
Anat. Embryol
188
,
1
11
Keller
R. E.
(
1975
)
Vital dye mapping of the gastrula and neurula of Xenopus laevis. I. Prospective areas and morphogenetic movements of the superficial layer.
Dev. Biol
42
,
222
241
Keller
R. E.
(
1976
)
Vital dye mapping of the gastrula and neurula of Xenopus laevis. II. Prospective areas and morphogenetic movements of the deep layers.
Dev. Biol
51
,
118
137
Keller
R. E.
,
Shih
J.
,
Sater
A.
,
Moreno
C.
(
1992
)
Planar induction of convergence and extension of the neural plate by the organizer of Xenopus.
Dev. Dynamics
193
,
218
234
Kimmel
C. B.
,
Warga
R. M.
,
Schilling
T. F.
(
1990
)
Origin and organization of the zebrafish fate map.
Development
108
,
581
594
Kimmel
C. B.
,
Ballard
W. W.
,
Kimmel
S. R.
,
Ullmann
B.
,
Schilling
T. F.
(
1995
)
Stages of Embryonic Development of the Zebrafish.
Dev. Dynamics
203
,
253
310
Lawson
K. A.
,
Meneses
J. J.
,
Pedersen
R. A.
(
1991
)
Clonal analysis ofepiblast fate during germ layer formation in the mouse embryo.
Development
113
,
891
911
Oppenheimer
J. M.
(
1936
)
Structures developed in amphibians by implantation of living fish organizer.
Proc. Soc. Exp. Biol. Med
34
,
461
463
Oppenheimer
J. M.
(
1936
)
Transplantation experiments on developing teleosts (Fundulus and Perca).
J. Exp. Zool
72
,
409
437
Ruiz i Altaba
A.
(
1992
)
Planar and vertical signals in the induction and patterning of the Xenopus nervous system.
Development
116
,
67
80
Selleck
M. A. J.
,
Stern
C. D.
(
1991
)
Fate mapping and cell lineage analysis of Hensen's node in the chick embryo.
Development
112
,
615
626
Shih
J.
,
Fraser
S. E.
(
1995
)
The distribution of tissue progenitors within the shield region of the zebrafish gastrula.
Development
121
,
2755
2765
Shih
J.
,
Keller
R. E.
(
1992
)
The epithelium of the dorsal marginal zone of Xenopus has organizer properties.
Development
116
,
887
899
Smith
J. C.
,
Slack
J. M. W.
(
1983
)
Dorsalization and neural induction: properties of the organizer in Xenopus laevis.
J. Embryol. Exp. Morph
78
,
299
317
Smith
J. L.
,
Gesteland
K. M.
,
Schoenwolf
G. C.
(
1994
).
Prospective fate map of the mouse primitive streak at 7.5 days of gestation.
Dev. Dynamics
201
,
279
289
Sulik
K.
,
Denhart
D. B.
,
Inagaki
T.
,
Carson
J. L.
,
Vrablic
T.
,
Gesteland
K.
,
Schoenwolf
G. C.
(
1994
)
Morphogenesis of the murine node and notochordal plate.
Dev. Dynamics
201
,
260
278
Talbot
W. S.
,
Trevarrow
B.
,
Halpern
M. E.
,
Melby
A. E.
,
Farr
G.
,
Postlethwait
J. H.
,
Jowett
T.
,
Kimmel
C. B.
,
Kimelman
D.
(
1995
)
A homeobox essential for zebrafish notochord development.
Nature
378
,
150
157
Warga
R. M.
,
Kimmel
C. B.
(
1990
)
Cell movements during epiboly and gastrulation in zebrafish.
Development
108
,
569
80
Weinstein
D. C.
,
Ruiz i Altaba
A.
,
Chen
W. S.
,
Hoodless
P.
,
Prezioso
V. R.
,
Jessell
T. M.
,
Darnell
J. E. J.
(
1994
)
The winged-helix transcription factor HNF3β is required for notochord development in the mouse embryo.
Cell
78
,
575
588
This content is only available via PDF.