Using gene targeting in mice, we have undertaken a systematic mutational analysis of the homeobox-containing 5′ HoxD genes. In particular, we have characterized the limb defects observed in mice with independent targeted disruptions of hoxd-12 and hoxd-13. Animals defective for hoxd-12 are viable, fertile, and appear outwardly normal yet have minor autopodal defects in the forelimb which include a reduction in the bone length of metacarpals and phalanges, and a malformation of the distal carpal bone d4. The limb phenotypes observed in hoxd-13 mutant mice are more extensive, including strong reductions in length, complete absences, or improper segmentations of many metacarpal and phalangeal bones. Additionally, the d4 carpal bone is not properly formed and often produces an extra rudimentary digit. To examine the genetic interactions between the 5′ HoxD genes, we bred these mutant strains with each other and with our previously characterized hoxd-11 mouse to produce a series of trans-heterozygotes. Skeletal analyses of these mice reveal that these genes interact in the formation of the vertebrate limb, since the trans-heterozygotes display phenotypes not present in the individual heterozygotes, including more severe carpal, metacarpal and phalangeal defects. Some of these phenotypes appear to be accounted for by a delay in the ossification events in the autopod, which lead to either the failure of fusion or the elimination of cartilaginous elements. Characteristically, these mutations lead to the overall truncation of digits II and V on the forelimb. Additionally, some trans-animals show the growth of an extra postaxial digit VI, which is composed of a bony element resembling a phalange. The results demonstrate that these genes interact in the formation of the limb. In addition to the previously characterized paralogous interactions, a multitude of interactions between Hox genes is used to finely sculpt the forelimb. The 5′ Hox genes could therefore act as a major permissive genetic milieu that has been exploited by evolutionary adaptation to form the tetrapod limbs.

Reference

Capecchi
M. R.
(
1989
)
Altering the genome by homologous recombination.
Science
244
,
1288
1292
Cohn
M. J.
,
Izpisúa-Belmonte
J.-C.
,
Abud
H.
,
Heath
J. K.
,
Tickle
C.
(
1995
)
Fibroblast growth factors induce additional limb development from the flank of chick embryos.
Cell
80
,
739
746
Condie
B. G.
,
Capecchi
M. R.
(
1994
)
Mice with targeted disruptions in the paralogous genes hoxa-3 and hoxd-3 reveal synergistic interactions.
Nature
370
,
304
307
Cusic
A. M.
,
Dagg
C. P.
(
1985
)
Spontaneous and retinoic acid-induced postaxial polydactyly in mice.
Teratology
31
,
49
59
Davis
A. P.
,
Capecchi
M. R.
(
1994
)
Axial homeosis and appendicular skeleton defects in mice with a targeted disruption of hoxd-11.
Development
120
,
2187
2198
Davis
A. P.
,
Witte
D. P.
,
Hsieh-Li
H. M.
,
Potter
S. S.
,
Capecchi
M. R.
(
1995
)
Absence of radius and ulna in mice lacking hoxa-11 and hoxd-11.
Nature
375
,
791
795
Deng
C.
,
Thomas
K. R.
,
Capecchi
M. R.
(
1993
)
Location of crossovers during gene targeting with insertion and replacement vectors.
Mol. Cell. Biol
13
,
2134
2140
Dolle
P.
,
Dierich
A.
,
LeMeur
M.
,
Schimmang
T.
,
Schuhbaur
B.
,
Chambon
P.
,
Duboule
D.
(
1993
)
Disruption of the Hoxd-13 gene induces localized heterochrony leading to mice with neotenic limbs.
Cell
75
,
431
441
Dolle
P.
,
Izpisúa-Belmonte
J. C.
,
Boncinelli
E.
,
Duboule
D.
(
1991
).
The Hox-4.8 gene is localized at the 5extremity of the Hox-4 complex and isexpressed in the most posterior parts of the body during development.
Mech. Dev
36
,
3
13
Dolle
P.
,
Izpisúa-Belmonte
J.-C.
,
Brown
J. M.
,
Tickle
C.
,
Duboule
D.
(
1991
)
Hox-4 genes and the morphogenesis of mammalian genitalia.
Genes Dev
5
,
1767
1776
Dolle
P.
,
Izpisúa-Belmonte
J.-C.
,
Falkenstein
H.
,
Renucci
A.
,
Duboule
D.
(
1989
)
Coordinate expression of the murine Hox-5 complex homeobox-containing genes during limb pattern formation.
Nature
342
,
767
772
Duboule
D.
(
1992
)
The vertebrate limb: a model system to study the Hox/HOM gene network during development and evolution.
BioEssays
14
,
375
384
Duboule
D.
(
1995
)
Vertebrate Hox genes and proliferation: an alternative pathway to homeosis?.
Curr. Opin. Genet. Dev
5
,
525
528
Fallon
J. F.
,
Lopez
A.
,
Ros
M. A.
,
Savage
M. P.
,
Olwin
B. B.
,
Simandl
B. K.
(
1994
)
FGF-2: Apical ectodermal ridge growth signal for chick limb development.
Science
264
,
104
107
Favier
B.
,
LeMeur
M.
,
Chambon
P.
,
Dolle
P.
(
1995
)
Axial skeletal homeosis and forelimb malformations in Hoxd-11 mutant mice.
Proc. Natl. Acad. Sci. USA
92
,
310
314
Fawcett
D.
,
Pasceri
P.
,
Fraser
R.
,
Colbert
M.
,
Rossant
J.
,
Giguere
V.
(
1995
)
Postaxial polydactyly in forelimbs of CRABP-II mutant mice.
Development
121
,
671
679
Horan
G. S. B.
,
Ramírez-Solis
R.
,
Featherstone
M. S.
,
Wolgemuth
D. J.
,
Bradley
A.
,
Behringer
R. R.
(
1995
)
Compound mutants for the paralogous hoxa-4, hoxb-4, and hoxd-4 genes show more complete homeotic transformations and a dose-dependent increase in the number of vertebrae transformed.
Genes Dev
9
,
1667
1677
Izpisúa-Belmonte
J.-C.
,
Falkenstein
H.
,
Dolle
P.
,
Renucci
A.
,
Duboule
D.
(
1991
)
Murine genes related to the Drosophila AbdB homeotic gene are sequentially expressed during development of the posterior part of the body.
EMBO J
10
,
2279
2289
Izpisúa-Belmonte
J. C.
,
Duboule
D.
(
1992
)
Homeobox genes and pattern formation in the vertebrate limb.
Dev. Biol
152
,
26
36
Lampron
C.
,
Rochette-Egly
C.
,
Gorry
P.
,
Dolle
P.
,
Mark
M.
,
Lufkin
T.
,
LeMeur
M.
,
Chambon
P.
(
1995
)
Mice deficient in cellular retinoic acid binding protein II (CRABPII) or in both CRABPI and CRABPII are essentially normal.
Development
121
,
539
548
Laufer
E.
,
Nelson
C. E.
,
Johnson
R. L.
,
Morgan
B. A.
,
Tabin
C.
(
1994
)
Sonic hedgehog and fgf-4 act through a signaling cascade and feedback loop to integrate growth and patterning of the developing limb bud.
Cell
79
,
993
1003
Mansour
S. L.
,
Thomas
K. R.
,
Capecchi
M. R.
(
1988
)
Disruption of the proto-oncogene int-2 in mouse embryo-derived stem cells: a general strategy for targeting mutations to non-selectable genes.
Nature
336
,
348
352
Niswander
L.
,
Tickle
C.
,
Vogel
A.
,
Booth
I.
,
Martin
G. R.
(
1993
)
FGF-4 replaces the apical ectodermal ridge and directs outgrowth and patterning of the limb.
Cell
75
,
579
587
Oster
G. F.
,
Shubin
N.
,
Murray
J. D.
,
Alberch
P.
(
1988
)
Evolution and morphogenetic rules: the shape of the vertebrate limb in ontogeny and phylogeny.
Evolution
42
,
862
884
Parr
B. A.
,
McMahon
A. P.
(
1995
)
Dorsalizing signal Wnt-7a required for normal polarity of D-V and A-P axes of mouse limb.
Nature
374
,
350
353
Rancourt
D. E.
,
Tsuzuki
T.
,
Capecchi
M. R.
(
1995
)
Genetic interaction between hoxb-5 and hoxb-6 is revealed by nonallelic noncomplementation.
Genes Dev
9
,
108
122
Ruddle
F. H.
,
Bartels
J. L.
,
Bentley
K. L.
,
Kappen
C.
,
Murtha
M. T.
,
Pendleton
J. W.
(
1994
)
Evolution of Hox genes.
Annu. Rev. Genet
28
,
423
442
Small
K. M.
,
Potter
S. S.
(
1993
)
Homeotic transformations and limb defects in Hoxa-11 mutant mice.
Genes Dev
7
,
2318
2328
Solursh
M.
(
1984
)
Ectoderm as a determinant of early tissue pattern in the limb bud.
Cell Differ
15
,
17
24
Tabin
C. J.
(
1995
)
The initiation of the limb bud: growth factors, Hox genes and retinoids.
Cell
80
,
671
674
Thomas
K. R.
,
Capecchi
M. R.
(
1987
)
Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells.
Cell
51
,
503
512
Thomas
K. R.
,
Deng
C.
,
Capecchi
M. R.
(
1992
)
High-fidelity gene targeting in embryonic stem cells by using sequence replacement vectors.
Mol. Cell. Biol
12
,
2919
2923
Tickle
C.
,
Eichele
G.
(
1994
)
Vertebrate limb development.
Annu. Rev. Cell Biol
10
,
121
152
Wurst
V.
,
Auerbach
A. B.
,
Joyner
A. L.
(
1994
)
Multiple developmental defects in Engrailed-1 mutant mice: an early mid-hindbrain deletion and patterning defects in forelimbs and sternum.
Development
120
,
2065
2075
Yang
Y.
,
Niswander
L.
(
1995
)
Interaction between the signaling molecules WNT7a and SHH during vertebrate limb development: dorsal signals regulate anteroposterior patterning.
Cell
80
,
939
947
Yokouchi
Y.
,
Nakazato
S.
,
Yamamoto
M.
,
Goto
Y.
,
Kameda
T.
,
Iba
H.
,
Kuroiwa
A.
(
1995
)
Misexpression of Hoxa-13 induces cartilage homeotic transformation and changes cell adhesiveness in chick limb buds.
Genes Dev
9
,
2509
2522
This content is only available via PDF.