The beta-globin locus control region (LCR) is contained on a 20 kb DNA fragment and is characterized by the presence of five DNaseI hypersensitive sites in erythroid cells, termed 5′HS1-5. A fully active 6.5 kb version of the LCR, called the muLCR, has been described. Expression of the beta-like globin genes is absolutely dependent on the presence of the LCR. The developmental expression pattern of the genes in the cluster is achieved through competition of the promoters for the activating function of the LCR. Transgenic mice experiments suggest that subtle changes in the transcription factor environment lead to the successive silencing of the embryonic epsilon-globin and fetal gamma-globin promoters, resulting in the almost exclusive transcription of the beta-globin gene in adult erythropoiesis. In this paper, we have asked the question whether the LCR and its individual hypersensitive sites 5′HS1-4 can activate a basic promoter in the absence of any other globin sequences. We have employed a minimal promoter derived from the mouse Hsp68 gene driving the bacterial beta-galactosidase (lacZ) gene. The results show that the muLCR and 5′HS3 direct erythroid-specific, embryonic expression of this construct, while 5′HS1, 5′HS2 and 5′HS4 are inactive at any stage of development. Expression of the muLCR and 5′HS3 transgenes is repressed during fetal stages of development. The transgenes are in an inactive chromatin conformation and the lacZ gene is not transcribed, as shown by in situ hybridization. These data are compatible with the hypothesis that the LCR requires the presence of an active promoter to adopt an open chromatin conformation and with models proposing progressive heterochromatization during embryogenesis. The results suggest that the presence of a beta-globin gene is required for LCR function as conditions become more stringent during development.

Adams
C. C.
,
Workman
J. L.
(
1993
)
Nucleosome displacement in transcription.
Cell
72
,
305
8
Antoniou
M.
,
deBoer
E.
,
Habets
G.
,
Grosveld
F.
(
1988
)
The human beta-globin gene contains multiple regulatory regions: identification of one promoter and two downstream enhancers.
EMBO J
7
,
377
84
Antoniou
M.
,
Grosveld
F.
(
1990
)
beta-globin dominant control region interacts differently with distal and proximal promoter elements.
Genes Dev
4
,
1007
13
Bonnerot
C.
,
Nicolas
J.-F.
(
1993
)
Application of lacZ gene fusions to postimplantation development.
Meth. Enzymol
225
,
451
469
Caterina
J. J.
,
Ciavatta
D. J.
,
Donze
D.
,
Behringer
R. R.
,
Townes
T. M.
(
1994
)
Multiple elements in human beta-globin locus control region 5HS 2 are involved in enhancer activity and position-independent, transgene expression.
Nucleic Acids Res
22
,
1006
11
Caterina
J. J.
,
Ryan
T. M.
,
Pawlik
K. M.
,
Palmiter
R. D.
,
Brinster
R. L.
,
Behringer
R. R.
,
Townes
T. M.
(
1991
)
Human beta-globin locus control region: analysis of the 5DNase I hypersensitive site HS 2 in transgenic mice.
Proc. Natl Acad. Sci. USA
88
,
1626
30
Driscoll
M. C.
,
Dobkin
C. S.
,
Alter
B. P.
(
1989
)
Gamma delta beta-thalassemia due to a de novo mutation deleting the 5beta-globin gene activation-region hypersensitive sites.
Proc. Natl Acad. Sci. USA
86
,
7470
4
Dzierzak
E.
,
Medvinsky
A.
(
1995
)
Mouse embryonic hematopoiesis.
Trends Genet
11
,
359
66
Elgin
S. C.
(
1990
)
Chromatin structure and gene activity.
Curr. Opin. Cell Biol
2
,
437
45
Ellis
J.
,
Talbot
D.
,
Dillon
N.
,
Grosveld
F.
(
1993
)
Synthetic humanbeta-globin 5 HS2 constructs function as locus control regions only in multicopy transgene concatamers.
EMBO J
12
,
127
34
Ellis
J.
,
Tan-Un
K. C.
,
Harper
A.
,
Michalovich
D.
,
Yannoutsos
N.
,
Philipsen
S.
,
Grosveld
F.
(
1996
)
A dominant chromatin-opening activity in 5hypersensitive site 3 of the human beta-globin locus control region.
EMBO J
15
,
562
568
Fiering
S.
,
Epner
E.
,
Robinson
K.
,
Zhuang
Y.
,
Telling
A.
,
Hu
M.
,
Martin
D. I.
,
Enver
T.
,
Ley
T. J.
,
Groudine
M.
(
1995
)
Targeted deletion of 5HS2 of the murine beta-globin LCR reveals that it is not essential for proper regulation of the beta-globin locus.
Genes Dev
9
,
2203
13
Forrester
W. C.
,
Epner
E.
,
Driscoll
M. C.
,
Enver
T.
,
Brice
M.
,
Papayannopoulou
T.
,
Groudine
M.
(
1990
)
A deletion of the human beta-globin locus activation region causes a major alteration in chromatin structure and replication across the entire beta-globin locus.
Genes Dev
4
,
1637
49
Fraser
P.
,
Hurst
J.
,
Collis
P.
,
Grosveld
F.
(
1990
)
DNaseI hypersensitive sites 1, 2 and 3 of the human beta-globin dominant control region direct position-independent expression.
Nucleic Acids Res
18
,
3503
8
Fraser
P.
,
Pruzina
S.
,
Antoniou
M.
,
Grosveld
F.
(
1993
)
Each hypersensitive site of the human beta-globin locus control region confers a different developmental pattern of expression on the globin genes.
Genes Dev
7
,
106
13
Guy
L.-G.
,
Kothary
R.
,
DeRepentigny
Y.
,
Delvoye
N.
,
Ellis
J.
,
Wall
L.
(
1996
)
The beta-globin locus control region enhances transcription but does not confer position-independent expression onto the lacZ gene in transgenic mice.
EMBO J
15
,
3713
3721
Hardison
R.
,
Xu
J.
,
Jackson
J.
,
Mansberger
J.
,
Selifonova
O.
,
Grotch
B.
,
Biesecker
J.
,
Petrykowska
H.
,
Miller
W.
(
1993
)
Comparative analysis of the locus control region of the rabbit beta-like gene cluster: HS3 increases transient expression of an embryonic epsilon-globin gene.
Nucleic Acids Res
21
,
1265
72
Hebbes
T. R.
,
Thorne
A. W.
,
Clayton
A. L.
,
Crane-Robinson
C.
(
1992
)
Histone acetylation and globin gene switching.
Nucleic Acids Res
20
,
1017
22
Hug
B. A.
,
Wesselschmidt
R. L.
,
Fiering
S.
,
Bender
M. A.
,
Epner
E.
,
Groudine
M.
,
Ley
T. J.
(
1996
)
Analysis of mice containing a targeted deletion of beta-globin locus control region 5hypersensitive site 3.
Mol. Cell. Biol
16
,
2906
2912
Jimenez
G.
,
Gale
K. B.
,
Enver
T.
(
1992
)
The mouse beta-globin locus control region: hypersensitive sites 3 and 4.
Nucleic Acids Res
20
,
5797
803
Jimenez
G.
,
Griffiths
S. D.
,
Ford
A. M.
,
Greaves
M. F.
,
Enver
T.
(
1992
)
Activation of the beta-globin locus control region precedes commitment to the erythroid lineage.
Proc. Natl Acad. Sci. USA
89
,
10618
22
Kim
C. G.
,
Epner
E. M.
,
Forrester
W. C.
,
Groudine
M.
(
1992
)
Inactivation of the human beta-globin gene by targeted insertion into the beta-globin locus control region.
Genes Dev
6
,
928
38
Kioussis
D.
,
Vanin
E.
,
deLange
T.
,
Flavell
R. A.
,
Grosveld
F. G.
(
1983
)
Beta-globin gene inactivation by DNA translocation in gamma beta-thalassaemia.
Nature
306
,
662
6
Kollias
G.
,
Wrighton
N.
,
Hurst
J.
,
Grosveld
F.
(
1986
)
Regulated expression of human A gamma-, beta-and hybrid gamma beta-globin genes in transgenic mice: manipulation of the developmental expression patterns.
Cell
46
,
89
94
Kothary
R.
,
Clapoff
S.
,
Brown
A.
,
Campbell
R.
,
Peterson
A.
,
Rossant
J.
(
1988
)
A transgene containing lacZ inserted into the dystonia locus is expressed in neural tube.
Nature
335
,
435
7
Kothary
R.
,
Clapoff
S.
,
Darling
S.
,
Perry
M. D.
,
Moran
L. A.
,
Rossant
J.
(
1989
)
Inducible expression of an hsp68 -lacZ hybrid gene in transgenic mice.
Development
105
,
707
14
Kothary
R.
,
Perry
M. D.
,
Moran
L. A.
,
Rossant
J.
(
1987
)
Cell-lineage-specific expression of the mouse hsp68 gene during embryogenesis.
Dev. Biol
121
,
342
8
Lowrey
C. H.
,
Bodine
D. M.
,
Nienhuis
A. W.
(
1992
)
Mechanism of DNase I hypersensitive site formation within the human globin locus control region.
Proc. Natl Acad. Sci. USA
89
,
1143
7
Moon
A. M.
,
Ley
T. J.
(
1991
)
Functional properties of the beta-globin locus control region in K562 erythroleukemia cells.
Blood
77
,
2272
84
Nandi
A. K.
,
Roginski
R. S.
,
Gregg
R. G.
,
Smithies
O.
,
Skoultchi
A. I.
(
1988
)
Regulated expression of genes inserted at the human chromosomal beta-globin locus by homologous recombination.
Proc. Natl Acad. Sci. USA
85
,
3845
9
Patterton
D.
,
Wolffe
A. P.
(
1996
)
Developmental roles for chromatin and chromosomal structure.
Dev. Biol
173
,
2
13
Pawlik
K. M.
,
Townes
T. M.
(
1995
)
Autonomous, erythroid-specific DNase I hypersensitive site formed by human beta-globin locus control region (LCR) 5HS 2 in transgenic mice.
Dev. Biol
169
,
728
32
Philipsen
S.
,
Pruzina
S.
,
Grosveld
F.
(
1993
)
The minimal requirements for activity in transgenic mice of hypersensitive site 3 of the beta globin locus control region.
EMBO J
12
,
1077
85
Philipsen
S.
,
Talbot
D.
,
Fraser
P.
,
Grosveld
F.
(
1990
)
The beta-globin dominant control region: hypersensitive site 2.
EMBO J
9
,
2159
67
Pruzina
S.
,
Antoniou
M.
,
Hurst
J.
,
Grosveld
F.
,
Philipsen
S.
(
1994
)
Transcriptional activation by hypersensitive site three of the human beta-globin locus control region in murine erythroleukemia cells.
Biochim. Biophys. Acta
9
,
351
60
Pruzina
S.
,
Hanscombe
O.
,
Whyatt
D.
,
Grosveld
F.
,
Philipsen
S.
(
1991
)
Hypersensitive site 4 of the human beta globin locus control region.
Nucleic Acids Res
19
,
1413
9
Raap
A. K.
,
van de Corput
M. P.
,
Vervenne
R. A.
,
van Gijlswijk
R. P.
,
Tanke
H. J.
,
Wiegant
J.
(
1995
)
Ultra-sensitive FISH using peroxidase-mediated deposition of biotin-or fluorochrome tyramides.
Hum. Mol. Genet
4
,
529
34
Reitman
M.
,
Lee
E.
,
Westphal
H.
,
Felsenfeld
G.
(
1993
)
An enhancer/locus control region is not sufficient to open chromatin.
Mol. Cell Biol
13
,
3990
8
Robertson
G.
,
Garrick
D.
,
Wu
W.
,
Kearns
M.
,
Martin
D.
,
Whitelaw
E.
(
1995
)
Position-dependent variegation of globin transgene expression in mice.
Proc. Natl Acad. Sci. USA
92
,
5371
5
Ryan
T. M.
,
Behringer
R. R.
,
Martin
N. C.
,
Townes
T. M.
,
Palmiter
R. D.
,
Brinster
R. L.
(
1989
)
A single erythroid-specific DNase I super-hypersensitive site activates high levels of human beta-globin gene expression in transgenic mice.
Genes Dev
3
,
314
23
Shehee
W. R.
,
Loeb
D. D.
,
Adey
N. B.
,
Burton
F. H.
,
Casavant
N. C.
,
Cole
P.
,
Davies
C. J.
,
McGraw
R. A.
,
Schichman
S. A.
,
Severynse
D. M.
,
Voliva
C. F.
,
Weyter
F. W.
,
Wisely
G. B.
,
Edgell
M. H.
,
Hutchison
C. A.
III
(
1989
)
Nucleotide sequence of the BALB/c mouse beta-globin complex.
J. Mol. Biol
205
,
41
62
Shehee
W. R.
,
Oliver
P.
,
Smithies
O.
(
1993
)
Lethal thalassemia after insertional disruption of the mouse major adult beta-globin gene.
Proc. Natl Acad. Sci. USA
90
,
3177
81
Shivdasani
R. A.
,
Orkin
S. H.
(
1996
)
The transcriptional control of hematopoiesis.
Blood
87
,
4025
4039
Stamatoyannopoulos
J. A.
,
Goodwin
A.
,
Joyce
T.
,
Lowrey
C. H.
(
1995
)
NF-E2 and GATA binding motifs are required for the formation of DNase I hypersensitive site 4 of the human beta-globin locus control region.
EMBO J
14
,
106
16
Talbot
D.
,
Collis
P.
,
Antoniou
M.
,
Vidal
M.
,
Grosveld
F.
,
Greaves
D. R.
(
1989
)
A dominant control region from the human beta-globin locus conferring integration site-independent gene expression.
Nature
338
,
352
5
Talbot
D.
,
Philipsen
S.
,
Fraser
P.
,
Grosveld
F.
(
1990
)
Detailed analysis of the site 3 region of the human beta-globin dominant control region.
EMBO J
9
,
2169
77
Taramelli
R.
,
Kioussis
D.
,
Vanin
E.
,
Bartram
K.
,
Groffen
J.
,
Hurst
J.
,
Grosveld
F. G.
(
1986
)
Gamma delta beta-thalassaemias 1 and 2 are the result of a 100 kbp deletion in the human beta-globin cluster.
Nucleic Acids Res
14
,
7017
29
Tuan
D.
,
Solomon
W.
,
Li
Q.
,
London
I. M.
(
1985
)
The ‘ beta-like-globin' gene domain in human erythroid cells.
Proc. Natl Acad. Sci. USA
82
,
6384
8
Tuan
D. Y.
,
Solomon
W. B.
,
London
I. M.
,
Lee
D. P.
(
1989
)
An erythroid-specific, developmental-stage-independent enhancer far upstream of the human ‘beta-like globin’ genes.
Proc. Natl Acad. Sci. USA
86
,
2554
8
Wijgerde
M.
,
Grosveld
F.
,
Fraser
P.
(
1995
)
Transcription complex stability and chromatin dynamics in vivo.
Nature
377
,
209
13
This content is only available via PDF.