The mesencephalic and rhombencephalic levels of origin of the hypobranchial skeleton (lower jaw and hyoid bone) within the neural fold have been determined at the 5-somite stage with a resolution corresponding to each single rhombomere, by means of the quail-chick chimera technique. Expression of certain Hox genes (Hoxa-2, Hoxa-3 and Hoxb-4) was recorded in the branchial arches of chick and quail embryos at embryonic days 3 (E3) and E4. This was a prerequisite for studying the regeneration capacities of the neural crest, after the dorsal neural tube was resected at the mesencephalic and rhombencephalic level. We found first that excisions at the 5-somite stage extending from the midmesencephalon down to r8 are followed by the regeneration of neural crest cells able to compensate for the deficiencies so produced. This confirmed the results of previous authors who made similar excisions at comparable (or older) developmental stages. When a bilateral excision was followed by the unilateral homotopic graft of the dorsal neural tube from a quail embryo, thus mimicking the situation created by a unilateral excision, we found that the migration of the grafted unilateral neural crest (quail-labelled) is bilateral and compensates massively for the missing crest derivatives. The capacity of the intermediate and ventral neural tube to yield neural crest cells was tested by removing the chick rhombencephalic neural tube and replacing it either uni- or bilaterally with a ventral tube coming from a stage-matched quail. No neural crest cells exited from the ventral neural tube but no deficiency in neural crest derivatives was recorded. Crest cells were found to regenerate from the ends of the operated region. This was demonstrated by grafting fragments of quail neural fold at the extremities of the excised territory. Quail neural crest cells were seen migrating longitudinally from both the rostral and caudal ends of the operated region and filling the branchial arches located inbetween. Comparison of the behaviour of neural crest cells in this experimental situation with that showed by their normal fate map revealed that crest cells increase their proliferation rate and change their migratory behaviour without modifying their Hox code.

Basler
K.
,
Edlund
T.
,
Jessell
T. M.
,
Yamada
T.
(
1993
)
Control of cell pattern in the neural tube—regulation of cell differentiation by dorsalin-1, a novel TGF-beta family member.
Cell
73
,
687
702
Carpenter
E. M.
,
Goddard
J. M.
,
Chisaka
O.
,
Manley
N. R.
,
Capecchi
M. R.
(
1993
)
Loss of Hox-A1 (Hox-1. 6) function results in the reorganization of the murine hindbrain.
Development
118
,
1063
1075
Chedotal
A.
,
Pourquie
O.
,
Sotelo
C.
(
1995
)
Initial tract formation in the brain of the chick embryo: selective expression of BEN/SC1/DM-GRASP cell adhesion molecule.
Eur. J. Neurosci
7
,
198
212
Chisaka
O.
,
Capecchi
M. R.
(
1991
)
Regionally restricted developmental defects resulting from targeted disruption of the mouse homeobox gene hox-1. 5.
Nature
350
,
473
479
Chisaka
O.
,
Musci
T. S.
,
Capecchi
M. R.
(
1992
)
Developmental defects of the ear, cranial nerves and hindbrain resulting from targeted disruption of the mouse homeobox gene Hox-1. 6.
Nature
355
,
516
520
Couly
G.
,
Le Douarin
N. M.
(
1990
)
Head morphogenesis in embryonic avian chimeras: evidence for a segmental pattern in the ectoderm corresponding to the neuromeres.
Development
108
,
543
558
Couly
G. F.
,
Coltey
P. M.
,
Le Douarin
N. M.
(
1992
)
The developmental fate of the cephalic mesoderm in quail-chick chimeras.
Development
114
,
1
15
Couly
G. F.
,
Coltey
P. M.
,
Le Douarin
N. M.
(
1993
)
The triple origin of skull in higher vertebrates—A study in quail-chick chimeras.
Development
117
,
409
429
Dickinson
M. E.
,
Selleck
M. A. J.
,
Mc-Mahon
A. P.
,
Bronner-Fraser
N.
(
1995
)
Dorsalization of the neural tube by the non-neural ectoderm.
Development
121
,
2099
2106
Dolle
P.
,
Lufkin
T.
,
Krumlauf
R.
,
Mark
M.
,
Duboule
D.
,
Chambon
P.
(
1993
)
Local alterations of Krox-20 and Hox gene expression in the hindbrain suggest lack of rhombomere-4 and rhombomere-5 in homozygote null Hoxa-1 (Hox-1. 6) mutant embryos.
Proc. Natl. Acad. Sci. USA
90
,
7666
7670
Eichmann
A.
,
Marcelle
C.
,
Breant
C.
,
Le Douarin
N. M.
(
1993
)
2 molecules related to the VEGF receptor are expressed in early endothelial cells during avian embryonic development.
Mech. Dev
42
,
33
48
Fraser
S.
,
Keynes
R.
,
Lumsden
A.
(
1990
)
Segmentation in the chick embryo hindbrain is defined by cell lineage restrictions.
Nature
344
,
431
435
Gendron-Maguire
M.
,
Mallo
M.
,
Zhang
M.
,
Gridley
T.
(
1993
)
Hoxa-2 mutant mice exhibit homeotic transformation of skeletal elements derived from cranial neural crest.
Cell
75
,
1317
1331
Goronowitsch
N.
(
1892
)
Die axiale und die laterale Kopfmetamerie der Vögelembryonen. Die Rolle der sog. ‘Ganglienleisten’ im Aufbaue der Nervenstämme.
Anat. Anz
7
,
454
464
Grapin-Botton
A.
,
Bonnin
M. A.
,
McNaughton
L. A.
,
Krumlauf
R.
,
Le Douarin
N. M.
(
1995
)
Plasticity of transposed rhombomeres: Hox gene induction is correlated with phenotypic modifications.
Development
121
,
2707
2721
Hamburger
V.
,
Hamilton
H. L.
(
1951
)
A series of normal stages in the development of the chick embryo.
J. Morphol
88
,
49
92
Hammond
W. S.
,
Yntema
C. L.
(
1947
)
Depletion of the thoraco-lumbar sympathetic system following removal of neural crest in the chick.
J. Comp. Neurol
86
,
237
265
Hammond
W. S.
,
Yntema
C. L.
(
1964
)
Depletions of pharyngeal arch cartilages following extirpation of cranial neural crest in chick embryos.
Acta Anat
56
,
21
34
Hunt
P.
,
Wilkinson
D.
,
Krumlauf
R.
(
1991
)
Patterning the vertebrate head: murine Hox 2 genes mark distinct subpopulations of premigratory and migrating cranial neural crest.
Development
112
,
43
50
Hunt
P.
,
Ferretti
P.
,
Krumlauf
R.
,
Thorogood
P.
(
1995
)
Restoration of normal Hox code and branchial arch morphogenesis after extensive deletion of hindbrain neural crest.
Dev. Biol
168
,
584
597
Kastschenko
N.
(
1888
)
Zur Entwicklungsgeschichte der Selachierembryos.
Anat. Anz
3
,
445
467
Krumlauf
R.
(
1994
)
Hox genes in vertebrate development.
Cell
78
,
191
201
Kuratani
S. C.
,
Eichele
G.
(
1993
)
Rhombomere transplantation repatterns the segmental organization of cranial nerves and reveals cell-autonomous expression of a homeodomain protein.
Development
117
,
105
117
Langille
R. M.
,
Hall
B. K.
(
1988
)
Role of the neural crest in development of the trabeculae and branchial arches in embryonic sea lamprey, Petromyzon marinus P (L).
Development
102
,
301
310
Langille
R. M.
,
Hall
B. K.
(
1988
)
Role of the neural crest in development of the cartilaginous cranial and visceral skeleton of the medaka, Oryzias latipes (Teleostei).
Anat. Embryol. (Berl.)
177
,
297
305
Le Douarin
N. M.
(
1973
)
A biological cell labelling technique and its use in experimental embryology.
Dev. Biol
30
,
217
222
Le Lievre
C.
(
1974
)
Rôle des cellules mesectodermiques issues des crêtes neurales cephaliques dans la formation des arcs branchiaux et du squelette visceral.
J. Embryol. Exp. Morphol
31
,
453
477
Liem
K. F.
,
Tremml
G.
,
Roelink
H.
,
Jessell
T. M.
(
1995
)
Dorsal differentiation of neural plate cells induced by BMP-mediated signals from epidermal ectoderm.
Cell
82
,
969
979
Lufkin
T.
,
Dierich
A.
,
Lemeur
M.
,
Mark
M.
,
Chambon
P.
(
1991
)
Disruption of the Hox-1. 6 homeobox gene results in defects in a region corresponding to its rostral domain of expression.
Cell
66
,
1105
1119
Lumsden
A.
,
Sprawson
N.
,
Graham
A.
(
1991
)
Segmental origin and migration of neural crest cells in the hindbrain region of the chick embryo.
Development
113
,
1281
–.
Manley
N. R.
,
Capecchi
M. R.
(
1995
)
The role of Hoxa-3 in mouse thymus and thyroid development.
Development
121
,
1989
2003
Mark
M.
,
Lufkin
T.
,
Vonesch
J. L.
,
Ruberte
E.
,
Olivo
J. C.
,
Dolle
P.
,
Gorry
P.
,
Lumsden
A.
,
Chambon
P.
(
1993
)
Two rhombomeres are altered in Hoxa-1 mutant mice.
Development
119
,
319
338
McKee
G. J.
,
Ferguson
M. W.
(
1984
)
The effects of mesencephalic neural crest cell extirpation on the development of chicken embryos.
J. Anat
139
,
491
512
Noden
D. M.
(
1983
)
The role of the neural crest in patterning of avian cranial skeletal, connective, and muscle tissues.
Dev. Biol
96
,
144
165
Peault
B. M.
,
Thiery
J. P.
,
Le Douarin
N. M.
(
1983
)
Surface marker for hemopoietic and endothelial cell lineages in quail that is defined by a monoclonal antibody.
Proc. Natl. Acad. Sci. USA
80
,
2976
2980
Platt
J. B.
(
1893
)
Ectodermic origin of the cartilage of the head.
Anat. Anz
8
,
506
509
Prince
V.
,
Lumsden
A.
(
1994
)
Hoxa-2 expression in normal and transposed rhombomeres—independent regulation in the neural tube and neural crest.
Development
120
,
911
923
Rijli
F. M.
,
Mark
M.
,
Lakkaraju
S.
,
Dierich
A.
,
Dolle
P.
,
Chambon
P.
(
1993
)
A homeotic transformation is generated in the rostral branchial region of the head by disruption of Hoxa-2, which acts as a selector gene.
Cell
75
,
1333
1349
Scherson
T.
,
Serbedzija
G.
,
Fraser
S.
,
Bronner-Fraser
M.
(
1993
)
Regulative capacity of the cranial neural tube to form neural crest.
Development
118
,
1049
1061
Sechrist
J.
,
Serbedzija
G. N.
,
Scherson
T.
,
Fraser
S. E.
,
Bronner-Fraser
M.
(
1993
)
Segmental migration of the hindbrain neural crest does not arise from its segmental generation.
Development
118
,
691
703
Sechrist
J.
,
Nieto
M. A.
,
Zamanian
R. T.
,
Bronner-Fraser
M.
(
1995
)
Regulative response of the cranial neural tube after neural fold ablation: Spatiotemporal nature of neural crest regeneration and up-regulation of Slug.
Development
121
,
4103
4115
Selleck
M. A. J.
,
Bronner-Fraser
M.
(
1995
)
Origins of the avian neural crest: The role of neural plate-epidermal interactions.
Development
121
,
525
538
Wilkinson
D. G.
,
Bhatt
S.
,
Chavrier
P.
,
Bravo
R.
,
Charnay
P.
(
1989
)
Segment-specific expression of a zinc-finger gene in the developing nervous system of the mouse.
Nature
337
,
461
464
This content is only available via PDF.