The HE gene is the earliest strictly zygotic gene activated during sea urchin embryogenesis. It is transiently expressed in a radially symmetrical domain covering the animal-most two-thirds of the blastula. The border of this domain, which is orthogonal to the primordial animal-vegetal axis, is shifted towards the animal pole in Li+-treated embryos. Exogenous micromeres implanted at the animal pole of whole embryos, animal or vegetal halves do not modify the extent and localization of the HE expression domain. In grafted embryos or animal halves, the Li+ effect is not affected by the presence of ectopic micromeres at the animal pole. A Li+-induced shift of the border, similar to that seen in whole embryos, occurs in embryoids developing from animal halves isolated from 8-cell stage embryos or dissected from unfertilised eggs. Therefore, the spatial restriction of the HE gene is not controlled by the inductive cascade emanating from the micromeres and the patterning along the AV-axis revealed by Li+ does not require interactions between cells from the animal and vegetal halves. This suggests that maternal primary patterning in the sea urchin embryo is not limited to a small vegetal center but extends along the entire AV axis.

Reference

Angerer
R. C.
,
Davidson
E. H.
(
1984
)
Molecular indices of cell lineage specification in the sea urchin embryo.
Science
226
,
1153
1160
Berridge
M. J.
,
Downes
P. C.
,
Hanley
M. R.
(
1989
)
Neural and developmental actions of lithium: a unifying hypothesis.
Cell
59
,
411
419
Cameron
R. A.
,
Davidson
E. H.
(
1991
)
Cell type specification during sea urchin development.
Trends Genet
7
,
212
218
Coffman
J. A.
,
McClay
D. R.
(
1990
)
A hyalin layer protein that becomes localized to the oral ectoderm and foregut of sea urchin embryos.
Dev. Biol
140
,
93
104
Davidson
E. H.
(
1989
)
Lineage-specific gene expression and the regulative capacities of the sea urchin embryo: a proposed mechanism.
Development
105
,
421
445
Fink
R. D.
,
McClay
D. R.
(
1985
)
Three cell recognition changes accompany the ingression of sea urchin primary mesenchyme cells.
Dev. Biol
107
,
66
74
Ghiglione
C.
,
Lhomond
G.
,
Lepage
T.
,
Gache
C.
(
1993
)
Cell-autonomous expression and position-dependent repression by Li+of two zygotic genes during sea urchin development.
EMBO J
12
,
87
96
Henry
J. J.
,
Amemiya
S.
,
Wray
G. A.
,
Raff
R.
(
1988
)
Early inductive interactions are involved in restricting cell fates of mesomeres in sea urchin embryos.
Dev. Biol
136
,
140
153
Lepage
T.
,
Gache
C.
(
1989
)
Purification and characterization of the sea urchin embryo hatching enzyme.
J. Biol. Chem
264
,
4787
4793
Lepage
T.
,
Gache
C.
(
1990
)
Early expression of a collagenase-like hatching enzyme gene in the sea urchin embryo.
EMBO J
9
,
3003
3012
Lepage
T.
,
Ghiglione
C.
,
Gache
C.
(
1992
)
Spatial and temporal expression pattern during sea urchin embryogenesis of a gene coding for a protease homologous to the human protein BMP-1 and to the product of the Drosophila dorsal-ventral patterning gene tolloid.
Development
114
,
147
164
Lepage
T.
,
Sardet
C.
,
Gache
C.
(
1992
)
Spatial expression of the hatching enzyme gene in the sea urchin embryo.
Dev. Biol
150
,
23
32
Livingston
B. T.
,
Wilt
F. H.
(
1989
)
Lithium evokes expression of vegetal-specific molecules in the animal blastomeres of sea urchin embryos.
Proc. Natl. Acad. Sci. USA
86
,
3669
3673
Livingston
B. T.
,
Wilt
F. H.
(
1990
)
Range and stability of cell fate determination in isolated sea urchin blastomeres.
Development
108
,
403
410
Nocente-McGrath
C.
,
McIsaac
R.
,
Ernst
S.
(
1991
)
Altered cell fate in LiCl treated sea urchin embryos.
Dev. Biol
147
,
445
450
Ransick
A.
,
Davidson
E. H.
(
1993
)
A complete second gut induced by transplanted micromeres in the sea urchin embryo.
Science
259
,
1134
1138
Schnabel
R.
(
1994
)
Autonomy and nonautonomy in cell fate specification of muscle in the Caenorhabditis elegans embryo: a reciprocal induction.
Science
263
,
1449
52
Schnabel
R.
(
1995
)
Duels without obvious sense: counteracting inductions involved in body wall muscle development in the Caenorhabditis elegans embryo.
Development
121
,
2219
2232
Schroeder
T. E.
(
1980
)
Expression of the prefertilization polar axis in sea urchin eggs.
Dev. Biol
79
,
428
443
Tomlinson
C. R.
,
Klein
W. H.
(
1990
)
Temporal and spatial transcriptional regulation of the aboral ectoderm-specific Spec genes during sea urchin embryogenesis.
Mol. Rep. Dev
25
,
328
338
Wikramanayake
A. H.
,
Brandhorst
B. P.
,
Klein
W. H.
(
1995
)
Autonomous and non-autonomous differentiation on ectoderm in different sea urchin species.
Development
121
,
1497
1505
Wilt
F. H.
(
1987
)
Determination and morphogenesis in the sea urchin embryo.
Development
100
,
559
575
This content is only available via PDF.