The CyIIIa cytoskeletal actin gene of Strongylocentrotus purpuratus is expressed specifically in the aboral ectoderm. In earlier work we identified a 2.3 kb cis-regulatory region that is necessary and sufficient for correct spatial and temporal expression of a CyIIIa.CAT gene. This region includes about 20 sites of specific protein-DNA interaction, at which at least nine different transcription factors may be bound. All except two of these factors have been cloned. In this work we have analyzed by deletion or mutagenesis each specific interaction. A specific function was identified for every binding site examined. These individual functions include control of amplitude and timing of expression at different phases of embryogenesis, and control of spatial expression. We show that particular negative regulatory interactions are required to repress expression of the CyIIIa.CAT construct in oral ectoderm and in skeletogenic mesenchyme at different stages. In further experiments we determined the overall functional organization of the CyIIIa cis-regulatory system, and we show that this system is modular in its regulatory structure. The ‘proximal module’ (with respect to the transcription start site) extends upstream for about 800 base pairs, and includes nine target sites serviced by six different transcription factors. Its major role is to establish CyIIIa expression in the aboral ectoderm territory as the blastomere founder cells are specified and the oral-aboral axis is determined, and to activate the CyIIIa gene late in cleavage. The ‘middle module,’ which lies upstream of the proximal module, acquires major control of CyIIIa function after the blastula stage. It includes six target sites, serviced by four different factors. The middle module is responsible for a sharp increase in expression occurring during gastrulation, mediated by the positively acting factors that bind within it. The middle module also includes sites at which two different negatively acting spatial control factors bind, the functions of which are required for correct spatial expression late in embryogenesis. The ‘distal module’ contains a number of sites at which a positively acting factor binds, but this module exercises no spatial regulatory function. Interactions within the distal module are required for the normal levels of function of both the proximal and middle modules.

Reference

Barth
J.
,
Ivarie
R.
(
1994
)
Polyvinyl alcohol enhances detection of low abundance transcripts in early stage quail embryos in a nonradioactive whole mount in situ hybridization technique.
BioTechniques
17
,
324
326
Calzone
F. J.
,
Theze
N.
,
Thiebaud
P.
,
Hill
R. L.
,
Britten
R. J.
,
Davidson
E. H.
(
1988
)
Developmental appearance of factors that bind specifically to cis-regulatory sequences of a gene expressed in the sea urchin embryo.
Genes Dev
2
,
1074
1088
Cameron
R. A.
,
Davidson
E. H.
(
1991
)
Cell type specification during sea urchin development.
Trends Genet
7
,
212
218
Cameron
R. A.
,
Hough-Evans
B. R.
,
Britten
R. J.
,
Davidson
E. H.
(
1987
)
Lineage and fate of each blastomere of the eight-cell sea urchin embryo.
Genes Dev
1
,
75
85
Cameron
R. A.
,
Britten
R. J.
,
Davidson
E. H.
(
1989
)
Expression of two actin genes during larval development in the sea urchin Strongylocentrotus purpuratus.
Mol. Reprod. Dev
1
,
149
155
Cameron
R. A.
,
Fraser
S. E.
,
Britten
R. J.
,
Davidson
E. H.
(
1989
)
The oral-aboral axis of a sea urchin embryo is specified by first cleavage.
Development
106
,
641
647
Cameron
R. A.
,
Smith
L. C.
,
Britten
R. J.
,
Davidson
E. H.
(
1994
)
Foreign ligand-receptor system perturbs axis specification during early sea urchin development.
Mech. Dev
45
,
31
47
Char
B. R.
,
Bell
J. R.
,
Dovala
J.
,
Coffman
J. A.
,
Harrington
M. G.
,
Becerra
J. C.
,
Davidson
E. H.
,
Calzone
F. J.
,
Maxson
R.
(
1993
)
SpOct, a gene encoding the major octamer-binding protein in sea urchin embryos: expression profile, evolutionary relationships, and DNA binding of expressed protein.
Dev. Biol
158
,
350
363
Cox
K. H.
,
Angerer
L. M.
,
Lee
J. J.
,
Britten
R. J.
,
Davidson
E. H.
,
Angerer
R. C.
(
1986
)
Cell lineage-specific programs of expression of multiple actin genes during sea urchin embryogenesis.
J. Mol. Biol
188
,
159
172
Davidson
E. H.
(
1989
)
Lineage-specific gene expression and the regulative capacities of the sea urchin embryo: a proposed mechanism.
Development
105
,
421
445
Davidson
E. H.
(
1990
)
How embryos work: a comparative view of diverse modes of cell fate specification.
Development
108
,
365
389
Davidson
E. H.
(
1991
)
Spatial mechanisms of gene regulation in metazoan embryos.
Development
113
,
1
26
Franks
R. R.
,
Anderson
R.
,
Moore
J. G.
,
Hough-Evans
B. R.
,
Britten
R. J.
,
Davidson
E. H.
(
1990
)
Competitive titration in living sea urchin embryos of regulatory factors required for expression of the CyIIIa actin gene.
Development
110
,
31
40
Flytzanis
C. N.
,
Britten
R. J.
,
Davidson
E. H.
(
1987
)
Ontogenic activation of a fusion gene introduced into the sea urchin egg.
Proc. Natl. Acad. Sci. USA
84
,
151
155
Gray
S.
,
Szymanski
P.
,
Levine
M.
(
1994
)
Short-range repression permits multiple enhancers to function autonomously within a complex promoter.
Genes Dev
8
,
1829
1838
Harrington
M. G.
,
Coffman
J. A.
,
Calzone
F. J.
,
Hood
L. E.
,
Britten
R. J.
,
Davidson
E. H.
(
1992
)
Complexity of sea urchin embryo nuclear proteins that contain basic domains.
Proc. Natl. Acad. Sci. USA
89
,
6252
6256
Hickey
R. J.
,
Boshar
M. F.
,
Crain
W. R.
Jr
(
1987
)
Transcription of three actin genes and a repeated sequence in isolated nuclei of sea urchin embryos.
Dev. Biol
124
,
215
227
Hough-Evans
B. R.
,
Franks
R. R.
,
Cameron
R. A.
,
Britten
R. J.
,
Davidson
E. H.
(
1987
)
Correct cell type-specific expression of a fusion gene injected into sea urchin eggs.
Dev. Biol
121
,
576
579
Hough-Evans
B. R.
,
Franks
R. R.
,
Zeller
R. W.
,
Britten
R. J.
,
Davidson
E. H.
(
1990
)
Negative spatial regulation of the lineage-specific CyIIIa actin gene in the sea urchin embryo.
Development
110
,
41
50
Lee
J. J.
,
Calzone
F. J.
,
Davidson
E. H.
(
1992
)
Modulation of sea urchin actin mRNA prevalence during embryogenesis: nuclear synthesis and decay rate measurements of transcripts from five different genes.
Dev. Biol
149
,
415
431
Li
Z.
,
Kalasapudi
S. R.
,
Childs
G.
(
1993
)
Isolation and characterization of cDNAs encoding the sea urchin (Strongylocentrotus purpuratus) homologue of the CCAAT binding protein NF-Y A subunit.
Nucl. Acids Res
21
,
4639
–.
Livant
D.
,
Cutting
A.
,
Britten
R. J.
,
Davidson
E. H.
(
1988
)
An in vivo titration of regulatory factors required for expression of a fusion gene in transgenic sea urchin embryos.
Proc. Natl. Acad. Sci. USA
85
,
7607
7611
Livant
D. L.
,
Hough-Evans
B. R.
,
Moore
J. G.
,
Britten
R. J.
,
Davidson
E. H.
(
1991
)
Differential stability of expression of similarly specified endogenous and exogenous genes in the sea urchin embryo.
Development
113
,
385
398
Makabe
K. W.
,
Kirchhamer
C. V.
,
Britten
R. J.
,
Davidson
E. H.
(
1995
)
Cis-regulatory control of the SM50 gene, an early marker of skeletogenic lineage specification in the sea urchin embryo.
Development
121
,
1957
1970
McMahon
A. P.
,
Novak
T. J.
,
Britten
R. J.
,
Davidson
E. H.
(
1984
)
Inducible expression of a cloned heat shock fusion gene in sea urchin embryos.
Proc. Natl. Acad. Sci. USA
81
,
7490
7494
McMahon
A. P.
,
Flytzanis
C. N.
,
Hough-Evans
B. R.
,
Katula
K. S.
,
Britten
R. J.
,
Davidson
E. H.
(
1985
)
Introduction of cloned DNA into sea urchin egg cytoplasm: replication and persistence during embryogenesis.
Dev. Biol
108
,
420
430
Ransick
R.
,
Ernst
S. G.
,
Britten
R. J.
,
Davidson
E. H.
(
1993
)
Whole mount in situ hybridization shows Endo 16 to be a marker for the vegetal plate territory in sea urchin embryos.
Mech. Dev
42
,
117
124
Sanger
F.
,
Nicklen
S.
,
Coulson
A. R.
(
1977
)
DNA sequencing with chain-terminating inhibitors.
Proc. Natl. Acad. Sci. USA
74
,
5463
5467
Shott
R. J.
,
Lee
J. J.
,
Britten
R. J.
,
Davidson
E. H.
(
1984
)
Differential expression of the actin gene family of Strongylocentrotus purpuratus.
Dev. Biol
101
,
295
306
Theze
N.
,
Calzone
F. J.
,
Thiebaud
P.
,
Hill
R. L.
,
Britten
R. J.
,
Davidson
E. H.
(
1990
)
Sequences of the CyIIIa actin gene regulatory domain bound specifically by sea urchin embryo nuclear proteins.
Mol. Reprod. Dev
25
,
110
122
Wang
D. G.-W.
,
Kirchhamer
C. V.
,
Britten
R. J.
,
Davidson
E. H.
(
1995
)
SpZ12-1, a negative regulator required for spatial control of the territory-specific CyIIIa gene in the sea urchin embryo.
Development
121
,
1111
1122
Wang
D. G.-W.
,
Britten
R. J.
,
Davidson
E. H.
(
1995
)
Maternal and embryonic provenance of a sea urchin embryo transcription factor, SpZ12-1.
Mol. Marine Biol. Biotechnol
4
,
148
153
Yuh
C.-H.
,
Ransick
A.
,
Martinez
P.
,
Britten
R. J.
,
Davidson
E. H.
(
1994
)
Complexity and organization of DNA-protein interactions in the 5regulatory region of an endoderm-specific marker gene in the sea urchin embryo.
Mech. Dev
47
,
165
186
Zeller
R. W.
,
Coffman
J. A.
,
Harrington
M. G.
,
Britten
R. J.
,
Davidson
E. H.
(
1995
)
SpGCF1, a sea urchin embryo transcription factor, exists as five nested variants encoded by a single mRNA.
Dev. Biol
169
,
713
727
Zeller
R. W.
,
Griffith
J. D.
,
Moore
J. G.
,
Kirchhamer
C. V.
,
Britten
R. J.
,
Davidson
E. H.
(
1995
)
A multimerizing transcription factor of sea urchin embryos capable of looping DNA.
Proc. Natl. Acad. Sci. USA
92
,
2989
2993
Zeller
R. W.
,
Britten
R. J.
,
Davidson
E. H.
(
1995
)
Developmental utilization of SpP3A1 and SpP3A2: two proteins which recogize the same DNA target site in several sea urchin gene regulatory regions.
Dev. Biol
170
,
75
82
This content is only available via PDF.