Previous lineage tracing experiments have shown that the vegetal blastomers of cleavage stage embryos give rise to all the mesoderm and endoderm of the sea urchin larva. In these studies, vegetal blastomers were labeled no later than the sixth cleavage division (60-64 cell stage). In an earlier study we showed that single cells in the vegetal plate of the blastula stage Lytechinus variegatus embryo could be labeled in situ with the fluorescent, lipophilic dye, DiI(C18), and that cells labeled in the central region of the vegetal plate of the mesenchyme blastula primarily gave rise to homogeneous clones consisting of a single secondary mesenchyme cell (SMC) type (Ruffins and Ettensohn (1993) Dev. Biol. 160, 285–288). Our clonal labeling showed that a detailed fate map could be generated using the DiI(C18) labeling technique. Such a fate map could provide information about the spatial relationships between the precursors of specific mesodermal and endodermal cell types and information concerning the movements of these cells during gastrulation and later embryogenesis. We have used this method to construct the first detailed fate map of the vegetal plate of the sea urchin embryo. Ours is a latitudinal map; mapping from the plate center, where the mesodermal precursors reside, through the region which contains the endodermal precursors and across the ectodermal boundary. We found that the precursors of certain SMC types are segregated in the mesenchyme blastula stage vegetal plate and that prospective germ layers reside within specific boundaries. To determine whether the vegetal plate is radially symmetrical with respect to mesodermal cell fates, single blastomeres of four cell stage embryos were injected with lysyl-rhodamine dextran (LRD). The resulting ectodermal labeling patterns were classified and correlated with the SMC types labeled. This analysis indicates that the dorsal and ventral blastomers do not contribute equally to SMC derivatives in L. variegatus.

Reference

Bossing
T.
,
Technau
G.
(
1994
)
The fate of the CNS midline progenitors in Drosophila as revealed by a new method for single cell labeling.
Development
120
,
1895
1906
Burke
R. D.
,
Myers
R. L.
,
Sexton
T. L.
,
Jackson
G.
(
1991
)
Cell movements during the initial phase of gastrulation in the sea urchin embryo.
Dev. Biol
146
,
542557
–.
Cameron
R. A.
,
Hough-Evens
B. R.
,
Britten
R. J.
,
Davidson
E. H.
(
1987
)
Lineage and fate of each blastomere of the eight cell stage sea urchin embryo.
Genes Dev
1
,
75
84
Cameron
R. A.
,
Fraser
S.
,
Britten
R. J.
,
Davidson
E. H.
(
1991
)
Macromere cell fates during sea urchin development.
Development
113
,
1085
1091
Davidson
E. H.
(
1989
)
Lineage-specific gene expression and the regulative capacities of the sea urchin embryo: a proposed mechanism.
Development
105
,
421
445
Ettensohn
C. A.
(
1984
)
Primary invagination of the vegetal plate during sea urchin gastrulation.
Amer. Zool
24
,
571
588
Ettensohn
C. A.
(
1985
)
Mechanisms of epithelial invagination.
Quart. Rev. Biol
60
,
289
307
Ettensohn
C. A.
(
1985
)
Gastrulation in the sea urchin embryo is accompanied by the rearrangement of invaginating epithelial cells.
Dev. Biol
112
,
383390
–.
Ettensohn
C. A.
(
1990
)
Cell interactions in the sea urchin embryo studied by fluorescence photoablation.
Science
248
,
1118
1115
Ettensohn
C. A.
,
McClay
D. R.
(
1988
)
Cell lineage conversion in the sea urchin embryo.
Dev. Biol
125
,
396
409
Ettensohn
C. A.
,
Ruffins
S. W.
(
1993
)
Mesodermal cell interaction in the sea urchin embryo: properties of skeletogenic secondary mesenchyme cells.
Development
117
,
1275
1237
Gong
Z.
,
Brandhorst
B. P.
(
1987
)
Stimulation of tubulin gene transcription by deciliation of sea urchin embryos.
Mol. Cell. Biol
7
,
4238
4246
Gustafson
T.
,
Wolpert
L.
(
1967
)
Cellular movement and contact in sea urchin morphogenesis.
Biol. Rev
42
,
422
498
Hardin
J. D.
(
1989
)
Local shifts in position and polarized motility drive cell rearrangements during sea urchin gastrulation.
Dev. Biol
136
,
430
445
Hardin
J. D.
,
Cheng
L. Y.
(
1986
)
The mechanisms and mechanics of archenteron elongation during sea urchin gastrulation.
Dev. Biol
115
,
490
501
Henry
J. J.
,
Amemiya
S.
,
Wray
G. A.
,
Raff
R. A.
(
1989
)
Early inductive interactions are involved in restricting cell fates of mesomeres in sea urchin embryos.
Dev. Biol
136
,
140
153
Katow
H.
,
Solursh
M.
(
1980
)
Ultrastructure of primary mesenchyme cell ingression in the sea urchin Lytechinus pictus.
J. Exp. Zool
213
,
237
246
Khaner
O.
,
Wilt
F.
(
1991
)
Interactions of different vegetal cells with mesomeres during early stages of sea urchin development.
Development
112
,
881
890
Logan
C. Y.
,
McClay
D. R.
(
1994
)
Cell-cell interactions govern cell fate decisions within the gut in the sea urchin embryo.
Mol. Biol. Cell
5
,
106
–.
McCain
E. R.
,
McClay
D. R.
(
1994
)
The establishment of bilateral asymmetry in sea urchin embryos.
Development
120
,
395
404
Merlino
G. T.
,
Chamberlain
J. P.
,
Kleinsmith
L. J.
(
1978
)
Effects of deciliation on tubulin messenger RNA activity in sea urchin embryos.
J. Biol. Chem
19
,
7078
7085
Nislow
C.
,
Morrill
J. B.
(
1988
)
Regionalized cell division during sea urchin gastrulation contributes to archenteron formation and is correlated with the establishment of larval symmetry.
Dev. Growth Differ
30
,
483
499
Pehrson
J. R.
,
Cohen
L. H.
(
1985
)
The fate of the small micromeres in sea urchin development.
Dev. Biol
113
,
522
526
Ransick
A.
,
Davidson
E. H.
(
1993
)
A complete second gut induced by transplanted micromeres in the sea urchin embryo.
Science
259
,
1134
1138
Ransick
A.
,
Ernst
S.
,
Britten
R. J.
,
Davidson
E. H.
(
1993
)
Whole mount in situ hybridization shows Endo 16 to be a marker for the vegetal plate territory in sea urchin embryos.
Mech. Dev
42
,
117
124
Ruffins
S. W.
,
Ettensohn
C. A.
(
1993
)
A clonal analysis of secondary mesenchyme cell fates in the sea urchin embryo.
Dev. Biol
160
,
285
288
Tanaka
S.
,
Dan
K.
(
1990
)
Study of the lineage and cell cycle of small micromeres of the sea urchin, Hemicentrotus pulcherrimus.
Dev. Growth Differ
32
,
145
156
Venuti
J. M.
,
Gan
L.
,
Kozlowski
M. T.
,
Klein
W. H.
(
1993
)
Developmental potential of muscle cell progenitors and the myogenic factor SUM-1 in the sea urchin embryo.
Mech. Dev
41
,
3
14
Wessel
G. M.
,
Goldberg
L.
,
Lennarz
W. J.
,
Klein
W. H.
(
1989
)
Gastrulation in the sea urchin is accompanied by the accumulation of an endoderm-specific mRNA.
Dev. Biol
136
,
526536
–.
Wessel
G. M.
,
McClay
D. R.
(
1985
)
Sequential expression of germ-layer specific molecules in the sea urchin embryo.
Dev. Biol
111
,
451463
–.
Wray
G. A.
,
McClay
D. R.
(
1988
)
The origin of spicule-forming cells in a ‘primitive’ sea urchin (Eucidaris tribuloides) which appears to lack primary mesenchyme cells.
Development
103
,
305
315
Wray
G. A.
,
Raff
R. A.
(
1991
)
, Rapid evolution of gastrulation mechanisms in a sea urchin with lecithotrophic larvae.
Evolution
45
,
1741
1750
This content is only available via PDF.