The zebrafish has emerged as an important model system for the experimental analysis of vertebrate development because it is amenable to genetic analysis and because its optical clarity allows the movements and the differentiation of individual cells to be followed in vivo. In this paper, we have sought to characterize the spatial distribution of tissue progenitors within the outer cell layers of the embryonic shield region of the early gastrula. Single cells were labeled by iontophoretic injection of fluorescent dextrans. Subsequently, we documented their position with respect to the embryonic shield and their eventual fates. Our data show that progenitor cells of the neural, notochordal, somitic and endodermal lineages were all present within the embryonic shield region, and that these progenitors were arranged as intermingled populations. Moreover, close to the midline, there was evidence for significant biases in the distribution of neural and notochord progenitors between the layers, suggesting some degree of radial organization within the zebrafish embryonic shield region. The distributions of tissue progenitors in the zebrafish gastrula differ significantly from those in amphibians; this bears not only on interpretations of mutant phenotypes and in situ staining patterns, but also on our understanding of morphogenetic movements during gastrulation and of neural induction in the zebrafish.

Reference

Reference
Abdelilah
S.
,
Solnica-Krezel
L.
,
Stainier
D. Y. R.
,
Driever
W.
(
1994
)
Implications for dorsoventral axis determination from the zebrafish mutation janus.
Nature
370
,
468
471
Ballard
W. W.
(
1973
)
A New fate Map for Salmo gairdneri.
J. Exp. Zoology
21
,
391
399
Doniach
T.
(
1992
)
Planar induction of Anteroposterior Pattern in the Central Nervous System of Xenopus laevis.
Science
257
,
542
545
Guthrie
S.
(
1991
)
Horizontal and Vertical Pathways in Neural Induction.
Trends in Neuroscience
14
,
123
126
Hammerschmidt
M.
,
Nusslein-Volhard
C.
(
1993
)
The expression of a zebrafish gene homologous to Drosophila snail suggests a conserved function in invertebrate and vertebrate gastrulation.
Development
119
,
1107
1118
Hanneman
E.
,
Westerfield
M.
(
1989
)
Early expression of acetylcholinesterase activity in functionally distinct neurons of the zebrafish.
Journal of Comparative Neurology
284
,
350
361
Hatta
K.
,
Bremiller
R.
,
Westerfield
M.
,
Kimmel
C. B.
(
1991
)
Diversity of expression of engrailed -like antigens in zebrafish.
Development
112
,
821
832
Helde
K. A.
,
Wilson
E. T.
,
Cretekos
C. J.
,
Grunwald
D. J.
(
1994
)
Contributions of Early Cells to the Fate Map of the Zebrafish Gastrula.
Science
265
,
517
520
Ho
R. K.
,
Kimmel
C. B.
(
1993
)
Commitment of cell fate in the early zebrafish embryo.
Science
261
,
109
11
Keller
R. E.
(
1975
)
Vital dye mapping of the gastrula and neurula of Xenopus laevis. I. Prospective areas and morphogenetic movements of the superficial layer.
Develop. Biol
42
,
222
241
Keller
R. E.
(
1976
)
Vital dye mapping of the gastrula and neurula of Xenopus laevis. II. Prospective areas and morphogenetic movements of the deep layers.
Develop. Biol
51
,
118
137
Keller
R. E.
,
Shih
J.
,
Sater
A.
,
Moreno
C.
(
1992
)
Planar induction of convergence and extension of the neural plate by the organizer of Xenopus.
Developmental Dynamics
193
,
218
234
Kessler
D. S.
,
Melton
D. A.
(
1994
)
Vertebrate Embryonic Induction- Mesoderm and Neural Patterning.
Science
266
,
596
604
Kimmel
C. B.
,
Warga
R. M.
(
1986
)
Tissue specific cell lineages originate in the gastrula of the zebrafish.
Science
231
,
365
368
Kimmel
C. B.
,
Warga
R. M.
,
Schilling
T. F.
(
1990
)
Origin and organization of the zebrafish fate map.
Development
108
,
581
594
Kispert
A.
,
Herrmann
B. G.
(
1994
)
Immunohistochemical Analysis of the Brachyury Protein in Wild-Type and Mutant Mouse Embryos.
Developmental Biology
161
,
179
193
Kispert
A.
,
Ortner
H.
,
Cooke
J.
,
Herrmann
B. G.
(
1995
)
The Chick Brachyury Gene: Developmental Expression Pattern and Response to Axial Induction by Localized Activin.
Developmental Biology
168
,
406
415
Krauss
S.
,
Concordet
J.-P.
,
Ingham
P. W.
(
1993
)
A Functionally Conserved Homolog of the Drosophila Segment Polarity Gene hh is Expressed in Tissues of Polarizing Activity in Zebrafish Embryos.
Cell
75
,
1431
1444
Lawson
K. A.
,
Meneses
J. J.
,
Pedersen
R. A.
(
1991
)
Clonal analysis of epiblast fate during germ layer formation in the mouse embryo.
Development
113
,
891
911
Oppenheimer
J. M.
(
1936
)
Processes of Localization in Developing Fundulus.
J. E. E. M
73
,
405
444
Pasteels
J.
(
1940
)
Recherches sur la facteurs initiaux de la morphogenese chez les Amphibiens Anoures. IV. Centrifugation axiale d'œuf feconde et insegmente.
Arch. Biol
51
,
335
386
Patel
N. H.
,
Martin-Blanco
E.
,
Coleman
K. G.
,
Poole
S. J.
,
Ellis
M. C.
,
Kornberg
T. B.
,
Goodman
C. S.
(
1989
)
Expression of engrailed Proteins in Arthropods, Annelids, and Chordates.
Cell
58
,
955
968
Purcell
S. M.
,
Keller
R. E.
(
1993
)
A different type of amphibian mesoderm morphogenesis as in seen in Ceratophrys ornata.
Development
117
,
307
317
Ruiz i Altaba
A.
(
1994
)
Pattern Formation in the Vertebrate Neural Plate.
Trends in Neuroscience
17
,
233
243
Schulte-Merker
S.
,
Ho
R. K.
,
Herrmann
B. G.
,
Nusslein-Volhard
C.
(
1992
)
The protein product of the zebrafish homologue of the mouse T gene is expressed in nuclei of the germ-ring and the notochord of the early embryo.
Development
116
,
1021
32
Selleck
M. A. J.
,
Stern
C. D.
(
1991
)
Fate mapping and cell lineage analysis of Hensen's node in the chick embryo.
Development
112
,
615
626
Sharpe
C. R.
,
Gurdon
J. B.
(
1990
)
The Induction of Anterior and Posterior Neural Genes in Xenopus laevis.
Development
109
,
765
774
Shih
J.
,
Keller
R. E.
(
1992
)
Patterns of cell motility in the organizer and dorsal mesoderm of Xenopus laevis.
Development
116
,
915
930
Sive
H. L.
,
Hattori
K.
,
Weintraub
H.
(
1989
)
Progressive Determination During Formation of the Anteroposterior Axis in Xenopus laevis.
Cell
58
,
171
180
Smith
J. C.
,
Price
B. M. J.
,
Green
J. B. A.
,
Weigel
D.
,
Herrmann
B. G.
(
1991
)
Expression of a Xenopus homolog of Brachyury (T) is an intermediate-early response to mesoderm induction.
Cell
67
,
79
87
Stachel
S. E.
,
Grunwald
D. J.
,
Myers
P. Z.
(
1993
)
Lithium perturbation and goosecoid expression identify a dorsal specification pathway in the pregastrula zebrafish.
Development
117
,
1261
74
Strahle
U.
,
Blader
P.
,
Henrique
D.
,
Ingham
P. W.
(
1993
)
Axial, a zebrafish gene expressed along the developing body axis, shows altered expression in cyclops mutant embryos.
Genes and Development
7
,
1436
1446
Strehlow
D.
,
Gilbert
W.
(
1993
)
A fate map for the first cleavages of the zebrafish.
Nature
361
,
451
453
Strehlow
D.
,
Heinrich
G.
,
Gilbert
W.
(
1994
)
The Fate of the Blastomeres of the 16-Cell Zebrafish Embryo.
Development
120
,
1791
1798
Thisse
C.
,
Thisse
B.
,
Halpern
M. E.
,
Postlethwait
J. H.
(
1994
)
goosecoid Expression in Neurectoderm and Mesendoderm is Disrupted in Zebrafish cyclops Gastrulas.
Developmental Biology
164
,
420
429
Trinkaus
J. P.
,
Trinkaus
M.
,
Fink
R. D.
(
1992
)
On the Convergent Cell Movements of Gastrulation in Fundulus.
Journal of Experimental Zoology
261
,
40
61
Warga
R. M.
,
Kimmel
C. B.
(
1990
)
Cell movements during epiboly and gastrulation in zebrafish.
Development
108
,
569
580
Wetts
R.
,
Serbedzija
G.
,
Fraser
S. E.
(
1989
)
Cell lineage analysis reveals multipotent precursors in the ciliary margin of the frog retina.
Developmental Biology
136
,
254
263
Xu
Q.
,
Holder
N.
,
Patient
R.
,
Wilson
S. W.
(
1994
)
Spatially regulated expression of three receptor tyrosine kinase genes during gastrulation in the zebrafish.
Development
120
,
287
299
Zimmerman
K.
,
Shih
J.
,
Bars
J.
,
Collazo
A.
,
Anderson
D. J.
(
1993
)
XASH-3, a novel Xenopus achaete-scute homolog, provides an early marker of planar neural induction and position along the mediolateral axis of the neural plate.
Development
119
,
221
232
This content is only available via PDF.